作者:作者单位:刊名:英文刊名:年,卷(期):被引用次数:
金利华, 李勤喜, 叶志云, JIN Li-Hu, LI Qin-Xi, YE Zhi-Yun
金利华,JIN Li-Hu(厦门大学生物医学工程研究中心,厦门,361005), 李勤喜,叶志云,LIQin-Xi,YE Zhi-Yun(厦门大学生命科学学院,厦门,361005)中国生物化学与分子生物学报
CHINESE JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY2006,22(4)0次
1.Kikuchi A Roles of Axin in the Wnt signalling pathway 1999(11)
2.Luo W.Lin S C Axin:a master scaffold for multiple signaling pathways 2004(03)
3.Zeng L.Fagotto F.Zhang T.Hsu W Vasicek T J Perry W L 3rd Lee J J Tilghman S M Gumbiner B MCostantini F The mouse Fused locus encodes Axin,an inhibitor of the Wnt signaling pathway thatregulates embryonic axis formation 1997(01)
4.Kikuchi A Modulation of Wnt signaling by Axin and Axil 1999(3-4)
5.Kishida S.Yamamoto H.Ikeda S.Kishida M Sakamoto I Koyama S Kikuchi A Axin,a negative regulator ofthe wnt signaling pathway,directly interacts with adenomatous polyposis coli and regulates thestabilization of beta-catenin 1998(18)
6.Hsu W.Zeng L.Costantini F Identification of a domain of Axin that binds to the serine/threonineprotein phosphatase 2A and a self-binding domain 1999(06)
7.Zhang Y.Qiu W J.Liu D X.Nco S Y He X Lin S C Differential molecular assemblies underlie the dualfunction of Axin in modulating the Wnt and JNK pathways 2001(34)
8.Zhang Y.Qiu W J.Chan S C.Han J He X Lin S C Casein kinase I and casein kinase Ⅱ differentiallyregulate Axin function in Wnt and JNK pathways 2002(20)
9.Ikeda S.Kishida S.Yamamoto H.Murai H Koyama S Kikuchi A Axin,a negative regulator of the Wntsignaling pathway,forms a complex with GSK3beta and beta-catenin and promotes GSK3betadependentphosphorylation of beta-catenin 1998(05)
10.Schwarz-Romond T.Asbrand C.Bakkers J.Kuhl M Schaeffer H J Huelsken J Behrens J Hammerschmidt MBirchmeier W The ankyrin repeat protein diversin recruits casein kinase Iε to the betacatenindegradation complex and acts in both canonical Wnt and Wnt/JNK signaling 2002(16)
11.Wehrli M.Dougan S T.Caldwell K.O' Keefe L Schwartz S VaizelOhayon D Schejter E Tomlinson ADiNardo S Arrow encodes an LDL-receptor-related protein essential for Wingless signaling 2000(6803)12.Mao J.Wang J.Liu B.Pan W Farr G H 3rd Flynn C Yuan H Takada S Kimelman D Li L Wu D Low-densitylipoprotein receptorrelated protein-5 binds to Axin and regulates the canonical Wnt signalingpathway 2001(04)
13.Kusano S.Ranb-Traub N I-mfa domain proteins interact with Axin and affect its regulation of theWnt and c-Jun N-terminal kinase signaling pathways 2002(18)
14.Kadoya T.Kishida S.Fukui A.Hinoi T Michiue T Asashima M Kikuchi A Inhibition of Wnt signalingpathway by a novel Axin-binding protein 2000(47)
15.Nishida T.Kaneko F.Kitagawa M.Yasuda H Characterization of a novel mammalian SUMO-1/Smt3-specificisopeptidase,a homologue of rat axam,which is an axin-binding protein promoting beta-catenindegradation 2001(42)
16.Kadoya T.Yamamoto H.Suzuki T.Yukita A Fukui A Michiue T Asabara T Tanaka K Asashima M Kikuchi A Desumoylation activity of Axam,a novel Axin-binding protein,is involved in downregulation of beta-catenin 2002(11)
17.Kishida S.Yamamoto H.Hino S.Ikeda S Kishida M Kikuehi A DIX domains of Dvl and Axin are necessaryfor protein interactions and their ability to regulate beta-catenin stability 1999(06)
18.Julius M A.Schelbert B.Hsu W.Fitzpatrick E Jho E Fagotto F Costantini F Kitajewski J Domains ofaxin and disheveled required for interaction and function in wnt signaling 2000(03)19.Hirabayashi S.Nishimura W.Iida J.Kansaku A Kishida S Kikuchi A Tanaka N Ham Y Synapticscaffolding molecule interacts with axin 2004(02)
20.Kim S I.Park C S.Lee M S.Kwon M S Jho E H Song W K Cyclindependent kinase 2 regulates theinteraction of Axin with beta-catenin 2004(02)
21.Aberle H A.Bauer A.Stappert J.Kispert A Kemler R beta-catenin is a target for the ubiquitin-proteasome pathway 1997(13)
22.Liu C.Li Y.Semenov M.Han C Baeg G H Tan Y Zhang Z Lin X He X Control of beta-cateninphosphorylation/degradation by a dual-kinase mechanism 2002(06)
23.Karim R.Tse G.Putti T.Scolyer R Lee S The significance of the Wnt pathway in the pathology ofhuman cancers 2004(02)
24.Hart M J.de los Santos R.Albert I N.Rubinfeld B Polakis P Downregulation of beta-catenin by humanAxin and its association with the APC tumor suppressor,beta-catenin and GSK3 beta 1998(10)25.Dajani R.Fraser E.Roe S M.Yeo M Good V M Thompson V Dale T C Pearl L H Structural basis forrecruitment of glycogen synthase kinase 3beta to the axin-APC acaffold complex 2003(03)26.Sakanaka C.Williams L T Functional domains of axin-importance of the C terminus as anoligomerization domain 1999(20)
27.Peifer M.Polakis P Wnt signaling in oncogenesis and embryogenesis-a look outside the nucleus2000(5458)
28.Gao Z H.Seeling J M.Hill V.Yochum A Virshup D M Casein kinase I phosphorylates and destabilizesthe beta-catenin degradation complex 2002(03)
29.Hino S.Michiue T.Asashima M.Kikuchi A Casein kinase I epsilon enhances the binding of Dvl-1 toFrat-1 and is essential for Wnt-3a-induced accumulation of beta-catenin 2003(16)
30.Henderson B R.Fagotto F The ins and outs of APC and beta-catenin nuclear transport 2002(09)31.Rosin-Arbesfeld R.Cliffe A.Brabletz T.Bienz M Nuclear export of the APC tumor suppressor controlsbeta-catenin function in transcription 2003(05)
32.Hinoi T.Yamamoto H.Kishida M.Takada S Kishida S Kikuchi A Complex formation of adenomatouspolyposis coli gene product and axin facilitates glycogen synthase kinase-3 beta-dependentphosphorylation of beta-catenin and down-regulates beta-catenin 2000(44)
33.Kawahara K.Morishita T.Nakamura T.Hamada F Toyoshima K Akiyama T Down-regulation of beta-cateninby the colorectal tumor suppressor APC requires association with Axin and beta-catenin 2000(12)34.Rubinfeld B.Tice D A.Polakis P Axin-dependent phosphorylation of the adenomatous polyposis coliprotein mediated by casein kinase I 2001(42)
35.Sakanaka C.Leong P.Xu L.Harrison S D Williams L T Casein kinase Iepsilon in the Wntpathway:regulation of beta-catenin function 1999(22)
36.Ikeda S.Kishida M.Matsuura Y.Usui H Kikuchi A GSK3beta-dependent phosphorylation of adenomatouspolyposis coli gene product can be modulated by beta-catenin and protein phosphatase 2A complexedwith Axin 2000(04)
37.Ha N C.Tonozuka T.Stamos J L.Choi H J Weis W I Mechanism of phosphorylation-dependent binding ofAPC to beta-catenin and its role in beta-catenin degradation 2004(04)
38.Xing Y.Clements W K.Kimelman D.Xu W Crystal structure of a beta-catenin/axin complex suggests amechanism for the beta-catenin destruction complex 2003(22)
39.Choi J.Park S Y.Costantini F.Jho E H Joo C K Adenomatous polyposis coli is down-regulated by theubiquitin-proteasome pathway in a process facilitated by Axin 2004(47)
40.Nakamura T.Hamada F.Ishidate T.Anai K Kawahara K Toyoshima K Akiyama T Axin,an inhibitor of theWnt signaling pathway,interacts with beta-catenin,GSK-3beta and APC and reduces the betacateninlevel 1998(06)
41.Wong C K.LuoW.Deng Y.ZouH YeZ LinSC The DIX Domain Protein Coiled-coil-DIX1 Inhibits c-Jun N-terminal Kinase Activation by Axin and Dishevelled through Distinct Mechanisms 2004(38)42.Shiomi K.Uchida H.Keino-Masu K.Masu M Ccd1,a novel protein with a DIX domain,is a positiveregulator in the Wnt signaling during zebrafish neural patterning 2003(01)
43.Shiomi K.Kanemoto M.Keino-Masu K.Yoshida S Soma K Masu M Identification and differentialexpression of multiple isoforms of mouse Coiled-coil-DIX1 (Ccd1),a positive regulator of Wntsignaling 2005(1-2)
44.Cong F.Varmus H Nuclear-cytoplasmic shuttling of Axin regulates subcellular localization of beta-catenin 2004(09)
45.Wiecbens N.Heinle K.Englmeier L.Schohl A Fagotto F Nucleocytoplasmic shuttling of Axin,a negativeregulator of the Wnt-betacatenin Pathway 2004(07)
46.Wiechens N.Fagotto F CRM1-and Ran-independent nuclear export of beta-catenin 2001(01)
47.Cliffe A.Hamada F.Bienz M A role of Dishevelled in relocating Axin to the plasma membrane duringwingless signaling 2003(11)
48.Tolwinski N S.Wehrli M.Rives A.Erdeniz N DiNardo S Wieschaus E Wg/Wnt signal can be transmittedthrough arrow/LRP5,6 and Axin independently of Zw3/Gsk3beta activity 2003(03)
49.Schweizer L.Varmus H Wnt/Wingless signaling through beta-catenin requires the function of bothLRP/Arrow and frizzled classes of receptors 2003
50.He X.Semenov M.Tamai K.Zeng X LDL receptor-related proteins 5 and 6 in Wnt/beta-cateninsignaling:arrows point the way 2004(08)
51.Hamada F.Tomoyasu Y.Takatsu Y.Nakamura M Nagai S Suzuki A Fujita F Shibuya H Toyoshima K Ueno NAkiyama T Negative regulation of Wingless signaling by D-axin,a Drosophila homolog of axin1999(5408)
52.Yamamoto H.Kishida S.Kishida M.Ikeda S Takada S Kikuchi A Phosphorylation of axin,a Wnt signalnegative regulator,by glycogen synthase kinase-3beta regulates its stability 1999(16)53.Tolwinski N S.Wieschaus E Rethinking Wnt signaling 2004(04)
54.Fukui A.Kishida S.Kikuchi A.Asashima M Effects of rat Axin domains on axis formation in Xenopusembryos 2000(05)
55.Itoh K.Krupnik V E.Sokol S Y Axis determination in Xenopus involves biochemical interactions ofaxin,glycogen synthase kinase 3 and beta-catenin 1998(10)
56.Kofron M.Klein P.Zhang F.Houston D W, Schaible K, Wylie C, Heasman J The role of maternal axin inpatterning the Xenopus embryo 2001(01)
57.Brannon M.Gomperts M.Sumoy L.Moon R T Kimelman D A beta-catenin/XTcf-3 complex binds to thesiamois promoter to regulate dorsal axis specification in Xenopus 1997(18)
58.Hsu W.Shakya R.Costantini F Impaired mammary gland and lymphoid development caused by inducibleexpression of Axin in transgenic mice 2001(06)
59.Satoh S.Daigo Y.Furukawa Y.Kato T Miwa N Nishiwaki T Kawasoe T Ishiguro H Fujita M Tokino TSasaki Y Imaoka S Murata M Shimano T Yamaoka Y Nakamura Y AXIN1 mutations in hepatocellularcarcinomas,and growth suppression in cancer cells by virus-mediated trandfer of AXIN1 2000(03)60.Lyu J.Costantini F.Jho E H.Joo C K Ectopic expression of Axin blocks neuronal differentiation ofembryonic carcinoma P19 cells 2003(15)
61.Orme M H.Giannini A L.Vivanco M D.Kypta R M Glycogen synthase kinase-3 and Axin function in abeta-catenin-independent pathway that regulates neurite outgrowth in neuroblastoma cells 2003(03)62.Ishizaki Y.Ikeda S.Fujimori M.Shimizu Y Kurihara T Itamoto T Kikuchi A Okajima M Asahara T Immunohistochemical analysis and mutational analyses of beta-catenin,Axin family and APC genes inhepatocellular carcinomas 2004(05)
63.Miao J.Kusafuka T.Udatsu Y.Okada A Sequence variants of the Axin gene in hepatoblastoma 2003(02).Taniguchi K.Roberts L R.Aderca I N.Dong X Qian C Murphy L M Nagorney D M Burgart L J Roche P CSmith D I Ross J A Liu W Mutational spectrum of beta-catenin,AXIN1,and AXIN2 in hepatocellularcarcinomas and hepatoblastomas 2002(31)
65.Dahmen R P.Koch A.Denkhaus D.Tonn J C Sorensen N Berthold F Behrens J Birchmeier W Wiestler O DPietsch T Deletions of AXIN1,a Component of the WNT/wingless Pathway,in Sporadic Medulloblastomas2001(19)
66.Jin L H.ShaoQJ.LuoW.YeZY LiQ LinSC Detection ofpoint mutations of the Axinl gene in colorectalcancers 2003(05)
67.Dan T.Kashima K.Kaku N.Suzuki M Yokoyama S Mutations in components of the Wnt signaling pathwayin adenoid cystic carcinoma 2004(12)
1.外文期刊 Schwarz-Romond. T.Metcalfe. C.Bienz. M Dynamic recruitment of axin by Dishevelled proteinassemblies
Dishevelled (Dvl) proteins are cytoplasmic components of the Wnt signalling pathway, which controls numerous cell fate decisionsduring animal development. During Wnt signalling, Dvl binds to the intracellular domain of the frizzled transmembrane receptors, andalso to axin to block its activity, which results in the activation of beta-catenin and, consequently, in a transcriptional switch.We have previously reported that the DIX domain of mammalian Dvl2 allows it to form dynamic protein assemblies. Here, we show thatthese Dvl2 assemblies recruit axin, and also casein kinase I epsilon. Using photobleaching experiments of GFP- tagged Dvl2 and axinto study the dynamics of their interaction, we found that the recruitment of axin- GFP by Dvl2 assemblies is accompanied by a
striking acceleration of the dynamic properties of axin-GFP. We also show that the interaction between Dvl2 and axin remains highlydynamic even after Wnt- induced relocation to the plasma membrane. We discuss how the recruitment of casein kinase I epsilon by Dvl2assemblies might impact on the recruitment of axin to the plasma membrane during Wnt signalling.
2.外文期刊 Cselenyi. CS.Jernigan. KK.Tahinci. E.Thorne. CA.Lee. LA.Lee. E LRP6 transduces a
canonical Wnt signal independently of Axin degradation by inhibiting GSK3's phosphorylation of beta-catenin
Wnt/beta-catenin signaling controls various cell fates in metazoan development and is misregulated in several cancers anddevelopmental disorders. Binding of a Wnt ligand to,its transmembrane coreceptors inhibits phosphorylation and degradation of thetranscriptional coactivator beta-catenin, which then translocates to the nucleus to regulate target gene expression. To understandhow Writ signaling prevents beta-catenin degradation, we focused on the Writ coreceptor low-density lipoprotein receptor-related
protein 6 (LRP6), which is required for signal transduction and is sufficient to activate Writ signaling when overexpressed. LRP6 hasbeen proposed to stabilize beta-catenin by stimulating degradation of Axin, a scaffold protein required for p-catenin degradation. Incertain systems, however, Wnt-mediated Axin turnover is not detected until after p-catenin has been stabilized. Thus, LRP6 may alsosignal through a mechanism distinct from Axin degradation. To establish a biochemically tractable system to test this hypothesis, weexpressed and purified the LRP6 intracellular domain from bacteria and show that it promotes beta-catenin stabilization and Axindegradation in Xenopus egg extract. Using an Axin mutant that does not degrade in response to LRP6, we demonstrate that LRP6 can
stabilize P-catenin in the absence of Axin turnover. Through experiments in egg extract and reconstitution with purified proteins, weidentify a mechanism whereby LRP6 stabilizes beta-catenin independently of Axin degradation by directly inhibiting GSK3'sphosphorylation of beta-catenin.
3.外文期刊 Oosterveen. T.Couldreuse. DYM.Yang. PT.Fraser. E.Bergsma. J.Dale. TC.Korswagen. HC Twofunctionally distinct Axin-like proteins regulate canonical Wnt signaling in C-elegans
Axin is a central component of the canonical Writ signaling pathway that interacts with the adenomatous polyposis coli proteinAPC and the kinase GSK3 beta to downregulate the effector l3-catenin. In the nematode Caenorhabditis elegans, canonical Wnt signalingis negatively regulated by the highly divergent Axin ortholog PRY-1. Mutation of pry-1 leads to constitutive activation of BAR-I/beta-catenin-dependent Writ signaling and results in a range of developmental defects. The pty-1 null phenotype is however notfully penetrant, indicating that additional factors may partially compensate for PRY-I function. Here, we report the cloning andfunctional analysis of a second Axin-like protein, which we named AXL-1. We show that despite considerable sequence divergence withPRY-1 and other Axin family members, AXL-1 is a functional Axin ortholog. AXL-1 functions redundantly with PRY-I in negativelyregulating BAR-1/beta-catenin signaling in the developing vulva and the Q neuroblast lineage. In addition, AXL-1 functions
independently of PRY-I in negatively regulating canonical Writ signaling during excretory cell development. In contrast to vertebrateAxin and the related protein Conductin, AXL-1 and PRY-1 are not functionally equivalent. We conclude that Axin function in C. elegansis divided over two different Axin orthologs that have specific functions in negatively regulating canonical Writ signaling. (c) 2007Elsevier Inc. All rights reserved.
4.外文期刊 Chia. IV.Costantini. F Mouse axin and Axin2/conductin proteins are functionallyequivalent in vivo
Axin is a central component of the canonical Wnt signal transduction machinery, serving as a scaffold for the beta-catenin
destruction complex. The related protein Axin2/Conductin, although less extensively studied, is thought to perform similar functions.Loss of Axin causes early embryonic lethality, while Axin2-null mice are viable but have craniofacial defects. Mutations in eithergene contribute to cancer in humans. The lack of redundancy between Axin and Axin2 could be due to their different modes of
expression: while Axin is expressed ubiquitously, Axin2 is expressed in tissue- and developmental-stage-specific patterns, and itstranscription is induced by canonical Wnt signaling. Alternatively, the two proteins might have partially different functions, ahypothesis supported by the observation that they differ in their subcellular localizations in colon epithelial cells. To test thefunctional equivalence of Axin and Axin2 in vivo, we generated knockin mice in which the Axin gene was replaced with Myc-tagged Axinor Axin2 cDNA. Mice homozygous for the resulting alleles, Axin(Ax) or Axin(Ax2), express no endogenous Axin but express either Myc-Axin or Myc-Axin2 under the control of the Axin locus. Both Axin(Ax/Ax) and Axin(Ax2/Ax2) homozygotes are apparently normal andfertile, demonstrating that the Axin and Axin2 proteins are functionally equivalent.
5.OA论文 Willert. Karl.Shibamoto. Sayumi.Nusse. Roel Wnt-induced dephosphorylation of Axin releasesβ-catenin from the Axin complex
The stabilization of β-catenin is a key regulatory step during cell fate changes and transformations to tumor cells. Severalinteracting proteins, including Axin, APC, and the protein kinase GSK-3β are implicated in regulating β-catenin phosphorylation andits subsequent degradation. Wnt signaling stabilizes β-catenin, but it was not clear whether and how Wnt signaling regulates the β-catenin complex. Here we show that Axin is dephosphorylated in response to Wnt signaling. The dephosphorylated Axin binds β-cateninless efficiently than the phosphorylated form. Thus, Wnt signaling lowers Axin’s affinity for β-catenin, thereby disengaging β-catenin from the degradation machinery.
6.外文期刊 Julius MA..Hsu W..Fitzpatrick E..Jho E..Fagotto F. Costantini F..Kitajewski J..SchelbertB. Domains of Axin and disheveled required for interaction and function in Wnt signaling
Disheveled blocks the degradation of beta-catenin in response to Wnt signal by interacting with the scaffolding protein, Axin. To
define this interaction in detail we undertook a mutational and binding analysis of the murine Axin and Disheveled proteins. The DIXdomain of Axin was found to be important for association with Disheveled and two other regions of Axin (between residues 1-168 and600-810) mere identified that can promote the association of Axin and Disheveled. We found that the DM domain of Disheveled iscritical for association with Axin in vivo and for Disheveled activity. The Disheveled DIX domain controlled the ability of
Disheveled to induce the accumulation of cytosolic beta-catenin whereas the PDZ domain was not essential to this function. (C) 2000Academic Press. [References: 30]
7.外文期刊 Primot A..Gompel M..Borgne A..Liabeuf S..Romette JL..Jho EH..Costantini F..Meijer L..Baratte B. Purification of GSK-3 by affinity chromatography on immobilized axin
Glycogen synthase kinase 3 (GSK-3), an element of the Wnt signalling pathway, plays a key role in numerous cellular processesincluding cell proliferation, embryonic development, and neuronal functions. It is directly involved in diseases such as cancer (bycontrolling apoptosis and the levels of beta -catenin and cyclin D1), Alzheimer's disease (tau hyperphosphorylation), and diabeteslas a downstream element of insulin action, GSK-3 regulates glycogen and lipid synthesis). We describe here a rapid and efficientmethod for the purification of GSK-3 by affinity chromatography on an immobilized fragment of axin. Axin is a docking protein whichinteracts with GSK-3 beta, beta -catenin, phosphatase 2A, and APC. A polyhistidine-tagged;ed axin peptide (residues 419 - 672) wasproduced in Escherichia coli and either immobilized on Ni-NTA agarose beads or purified and immobilized on CNBr-activated Sepharose4B. These \"Axin-His6\" matrices were found to selectively bind recombinant rat GSK-3 beta and native GSK-3 from yeast, sea urchinembryos, and porcine brain. The affinity-purified enzymes displayed high kinase activity. This single step purification methodprovides a convenient tool to follow the status of GSK-3 (protein level, phosphorylation state, kinase activity) under various
physiological settings. It also provides a simple and efficient way to purify large amounts of active recombinant or native GSK-3 forscreening purposes. (C) 2000 Academic Press. [References: 50]
8.外文期刊 Schwarz-Romond. T.Merrifield. C.Nichols. BJ.Bienz. M The Wnt signalling effectorDishevelled form dynamic protein assemblies rather than stabile associations with cytoplasmicvesicles
Dishevelled is a crucial effector upstream in the Wnt signalling pathway, but the molecular mechanism by which it transduces theWnt signal remains elusive. Dishevelled is a cytoplasmic protein with a strong tendency to form puncta, which correlates with itspotent activity in stimulating Wnt signal transduction when overexpressed. These puncta are thought to reflect cytoplasmic vesicles.However, we show here that the mammalian Dishevelled protein Dvl2 does not colocalise with known vesicle markers for clathrin-mediated or clathrin-independent endocytic pathways. Furthermore, Dvl2 puncta do not stain with lipid dyes, indicating that thesepuncta do not contain membranes. Instead, our evidence from live imaging by TIRF microscopy of Dvl2 tagged with green fluorescentprotein (GFP-Dvl2) revealed that these puncta move in and out of the evanescent field near the plasma membrane in an undirectedfashion, and that they can grow by collision and fusion. Furthermore, high-resolution confocal microscopy and photobleaching
experiments indicate that the GFP-Dvl2 puncta are protein assemblies; there is a constant exchange of GIFP-Dvl2 between puncta and adiffuse cytoplasmic pool, which, therefore, are in a dynamic equilibrium with each other. The same is true for the DIX domain of Dvl2itself and also for Axin-GFP, which equilibrates between the punctate and cytosolic pools. Our evidence indicates that Dvl2 and Axinpuncta are dynamic protein assemblies rather than cytoplasmic vesicles.
9.学位论文 徐洪涛 Axinβ-catenin的表达与肺癌的关系 2006
β-连环素(β-catenin)既是Wnt信号传导通路中的关键分子,又是E-cadherin/catenin复合体中的重要成员。当β-catenin在细胞核内蓄积时,能激活Wnt信号传导通路,启动靶基因转录,导致细胞增殖、侵袭和转移。Axin(Axisinhibitionprotein)是Wnt信号传导通路的重要负性调节因子,介导β-catenin磷酸化,促进其降解。人类肿瘤中,这些重要分子的相关作用如何尚不清楚,分析其表达、探索其机制对于防治人类肺癌意义重大。本研究探讨Axin和β-catenin在肺癌中的表达和β-catenin突变情况,分析它们与各临床病理因素的关系,揭示Axinβ-catenin和诱导肺癌细胞凋亡的机制。 方法:
(1)本研究采用44例新鲜肺癌及癌旁正常肺组织标本,均来自中国医科大学附属第一临床学院2003~2004年行外科切除手术的肺癌患者,患者术前均未接受过放化疗。
提取组织蛋白,采用考马斯亮蓝法进行蛋白定量。取等量蛋白,进行SDS-聚丙烯酰胺凝胶电泳和转印,一抗(anti-Axin1∶50稀释,Anti-β-actin1∶500稀释)和辣根过氧化物酶标记二抗(1∶50稀释)孵育后DAB显色。以β-actin为内对照,计算Axin的相对表达量。
使用Trizol试剂提取组织总RNA后,逆转录获得cDNA,均按说明书操作。PCR扩增Axin,产物长度为452bp,产物使用1.5%琼脂糖凝胶电泳检测观察。以β-actin为内对照,计算Axin的相对表达量。
(2)100例肺鳞癌、腺癌及对应的癌旁正常肺组织标本来自中国医科大学附属第一临床学院2001~2003年外科手术切除之原发性肺癌及癌周正常肺组织,患者术前均未接受过放化疗。
标本用中性溶液固定,石蜡包埋,制成4μm切片,经脱蜡,脱苯,水化后,采用链菌素抗生物素蛋白-过氧化物酶免疫组化法(S-P法)检测β-catenin蛋白和Axin蛋白表达,以PBS代替一抗作为阴性对照,以正常肺组织为阳性对照。结果判定:β-catenin正常阳性表达定位于细胞膜,每张切片随机选取10个高倍视野,每个视野计数100个瘤细胞,计数阳性细胞百分比。无着色为阴性(-),膜阳性瘤细胞数>90%为表达正常,≤90%为表达降低。10%以上瘤细胞核和(或)浆染色为核或浆表达。表达降低和胞浆、胞核表达统归为异常表达。Axin正常阳性表达定位于细胞浆,无着色和阳性瘤细胞数<40%为阴性表达(-),阳性瘤细胞数≥40%为阳性表达(+)。
采用酚-氯仿-异戊醇法提取肺癌标本DNA。PCR扩增β-catenin基因第三外显子,产物长度为199bp,经8%SDS聚丙烯酰胺凝胶电泳,银染后与DNA标准进行比较,鉴定扩增产物。PCR产物由上海联合基因公司纯化和测序。
(3)使用含10%小牛血清的RPMI10培养液,在37℃,含5%CO2的培养箱内培养肺癌PG细胞系。在35mm培养皿上接种2×105PG细胞,培养24h,待细胞数达到90%-95%后,转染Axin基因,按说明书操作,以未转染和转染空载体的PG细胞为对照。
免疫荧光:分别于转染后48h和72h取出转染组及对照组细胞爬片,丙酮固定10min。TritonX-100处理,血清封闭后,分别滴加FLAG、Axin、β-catenin和TCF-4一抗,4℃孵育过夜。避光加罗丹明(TRITC)和FITC标记二抗,DAPI复染细胞核后,荧光显微镜观察。
RT-PCR:收集转染组及对照组细胞,提取总RNA并反转录成cDNA,分别扩增Axin、β-catenin和TCF-4,以β-actin为内参。扩增产物经1.5%琼脂糖凝胶电泳后,成像分析。
流式细胞术:收集转染组及对照组细胞,95%乙醇固定,将细胞密度调至1×106/ml,PI染色后,流式细胞仪检测细胞周期和细胞凋亡情况,用ModfitLTV3.0软件分析结果。
(4)使用SPSS13.0统计软件进行数据处理,以P<0.05为有统计学意义。 结果:
(1)44例新鲜肺癌组织中Axin蛋白的表达量明显低于正常肺组织(t=-2.819;P=0.007)。AxinmRNA的表达量也明显低于癌旁正常肺组织(t=-2.513;P=0.016)。Axin的蛋白表达与mRNA表达相关(相关系数:0.301;P=0.047),但与肺癌的临床病理特征之间未发现明显相关性。(2)肺癌中β-catenin的异常表达率为80.0%,其中核表达阳性率为26.0%。高、中分化和低分化肺癌中,β-catenin的异常表达率分别为70.0%(35/50)和
90.0%(45/50),差异有显著性(P=0.012)。有淋巴结转移和无淋巴结转移肺癌中β-catenin异常表达率分别为87.3%(48/55)和1.1%(32/45),有明显差异(P=0.044)。Axin的阳性表达率为48.0%,高、中分化和低分化肺癌中,Axin的阳性率分别为60.0%(30/50)和36.0%(18/50),差异有显著性
(P=0.016)。Ⅰ、Ⅱ、Ⅲ期肺癌中,Axin的阳性率分别为46.3%(19/41)、76.5%(13/17)和38.1%(16/42),Ⅰ期和Ⅱ期(P=0.036)、Ⅱ期和Ⅲ期(P=0.008)均有显著性差异。在β-catenin核表达阳性的病例中,Axin阳性表达率为15.4%(4/26),显著低于β-catenin核表达阴性的病例59.5%(44/74)(P<0.001)。100例肺癌标本中未发现β-catenin基因第三外显子突变。
(3)将Axin基因导入肺癌PG细胞系后,Axin的mRNA和蛋白表达均明显增加,蛋白表达定位于细胞浆和细胞核,β-catenin蛋白的表达明显减少,但mRNA表达无明显变化,同时TCF-4的蛋白和mRNA表达均明显下降。流式细胞术检测发现,转染Axin基因后,PG细胞的凋亡率明显增加,但细胞周期变化不明显。 结论:
(1)肺癌组织中Axin的表达量明显低于正常肺组织。Axin的表达与肺鳞癌、腺癌的分期、低分化和β-catenin的细胞核蓄积负相关。Axin的表达增加能促进β-catenin蛋白的降解,抑制TCF-4的表达并诱导肺癌细胞的凋亡。Axin的表达缺失可能是肺癌恶性增殖的重要原因之一。
(2)β-catenin的异常表达与肺鳞癌、腺癌的低分化和淋巴结转移相关,其基因第三外显子突变不是肺癌中β-catenin异常蓄积的主要原因。
10.外文期刊 Wen Luo.Sheng-Cai Lin Axin: A Master Scaffold for Multiple Signaling Pathways
Axin was originally identified from the characterization of the Fused locus, the disruption of which leads to duplication of axisand embryonic lethality. It is a multidomain protein that interacts with multiple proteins and functions as a negative regulator ofWnt signaling by down-regulating the |3-catenin levels. Recently, it was demonstrated that Axin also plays an important role in a JNKsignaling pathway. Axin utilizes discriminatory domains for its distinct roles in the Wnt pathway and in the Axin/ JNK pathway. Herewe review the data that show how Axin regulates multiple signaling pathways by serving as a scaffold protein, controlling diversecellular functions in proliferation, fate determination, and suppression of tumorigenesis.
本文链接:http://d.g.wanfangdata.com.cn/Periodical_zgswhxyfzswxb200604005.aspx授权使用:哈尔滨医科大学(hebykdx),授权号:6be2e145-bbcd-4b70-b688-9e10009d624f
下载时间:2010年10月15日
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo9.cn 版权所有 赣ICP备2023008801号-1
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务