您好,欢迎来到化拓教育网。
搜索
您的当前位置:首页Axin在Wnt信号转导途径中的作用

Axin在Wnt信号转导途径中的作用

来源:化拓教育网
IssN1007.7626中国生物化学与分子生物学报堡堡望竺堕!殳坚婆壁堂堡螋逸堡壁翌垒趟熬尘塑望!望曼i然!錾逻2006年4月!登!!:!!:!!里兰二望!·综述·Axia在W哦信号转导途径中的作用金利华¨,李勤喜,叶志云”36l∞5)(覆门大学生令秘学学篦,麓门摘要Wnt信号转导途径是细胞形状、运动、黏附、增殖、分化、癌变及机体发育等过程的主要途径之一。血遍(轴萤由)是一个体轴发育抑制域子,作为稳架蛋白在Wn£信号转导途径申起蓦荧键的作瘸.Axin通过不同的祝裁调节¥连环蛋白的磷酸化和稳定性.它通过与A茂、GSK.38、¥逢环蛋白和cKIa结合形成复合体促进口连环蛋白的降解,还通过同源二聚化、核质穿梭、自身磷酸化和稳定性的来调节8连环蛋白的稳定性.Axin通过wnt信号转导途径参与了一系列生物学效应的诵控,如体骚发畜、缎脆死亡、神经元秘分纯等.作势一个馥发现戆牌瘸抑期嚣子,瘫珏将为癌症的诊断和治疗提供新的有效的手段.关键词axin;Wnt;信号转导中图分类号078RolesofAxinintheWntSignalingpathwayJIN【j—Hua”,MQin—xi,YEZhi.Yun”(&矗巅移删爸&谗嬲,殿8懈碍渤妇嚣毋,簌#粼n36l005,蕊溉)AbstractTheWntsjgnalingpathwayplaysi珈portantI试esincellshape,cellmovement,celladhesion,celldiff色l群ntiation,pr01iferationandprotein,itplaysoncogenesisanddevelopment.Axinisaxisinhibitor.Asscafbldcritical1.oleintheWntsignalingpathway.Axinregulatesthephosphorylationandstabilityof瑟-c戳e瓣j秘v遮di董强孢n|mecha珏is掇s.魏蠡eili|a£es零一e8圭e珏i珏丧;g糯蘸atio珏酚assembli珏ga茹一eale珏主珏dest粼elioncomplexincludingAPC,GsK一38,8一eatenin,cKIaanda)【initself,弧ehomo(重i瑚leIization,nuclear—cyt叩lasmicshuttling,phosphorylationandstabilityofaxinitselfaIsoplayi“lportantr01esinp—cateninregulation.1ntheWntsi{弘alingpfoVidepathway,axinpaIticipatesintheregulationso珏。Asofseriesofbiologiealef孙ctstl王壬珏orsuchasaxisde¥elopmen£,£elladea氇,nell∞n奎di垂孙re嫩i戤ion黼纛someansa珏e旗yreeo辨izeds娃pp弛ssor,axi秘willnewlyimpaetfulfordiagnosisandtherapyofKey、】.咐rdsaxin;Wnt;signalingtransduction缨照信号转导是当今生兹医学研究领域最前沿、最活跃的主题之一。wnt信号转导途径由一系列癌基因和抑癌基因编码的蹑白质组成,各种蛋白质之间彼此联系、棱互制约,在细胞增殖、分化、运动、黏附及视俸发育等过程中起着重要调节作用Ⅲ.Axin(轴蛋白)是一个体轴发育抑制因子(axi8inhibitor),也是一个肿瘤抑制因子,它谢一系列结合位点,作为檎架蛋自,麓与wnt信号转导途径熬许多重要成员相互结合,在个体发育、细胞增殖及癌变等过程中起着关键作用㈦o.目前,有关a)【in在wnt信号途径中的调节功能及其貔理研究是肿瘤信号转导领域的焦点之一。收稿日期:2005—09一19.接受日期:2005.12。2l福建省擞大科技项目(No.2002瑚2)资助”联系人强l&f奴:86,592—2184687;¨褒在魏蟪:厦门大学生物医学工程瓣究中心,覆门36l∞5E—mail:yzyl893@xmu.edu.cnReceived:Septernbersuppor№d19,2005;Accepted:DecemberKeyResearchProFam82l,2005Provincebythe《f两ian(No.2∞2f静02).+Corre8pondingauthor1斟&F瓤:86—592“2184687;E-mail:yzyl893@xmu.edu.cn1’胁semaddress:Re∞afebCenter《Biomedie建Enginee蛀醒,XiamenUnivefsi£v,Ximen3611005,ehina万方数据 290中国生物化学与分子生物学报22卷1A嫡n的发现似汛是1997年从一种称为Fused的小鼠突变结合区域(aa353~437)凹J、Diversin结合区域(aa。437)㈨、LRP结合区域(aa353353~437)…’12]、I一曲结合区域(aa385~468)n3I、p连环蛋白(p—catenin)结合区域(aa437—506)旧1、axin结合分子a】【am(a】【in株中克隆到的基因bj.嬲沉突变的纯合子胚胎会产生双向体轴n],说明a)(in在体轴形成过程中起着负调节的作用.事实上,把axin注入非洲爪蟾胚胎中,大部分胚胎表现出很强的体轴缺陷表型bo.不同的生物化学方法都证实了a】【in在不同物种中的存在u’40.从果蝇、爪蟾、鸡、小鼠到人类,axin都是十分保守的.axin普遍表达于不同的组织,包括脑、胸腺、心脏、肺、肝、脾和肾等.人类染色体中表达axin的似讥1基因定位于第16条染色体的长臂上(16口13.3),其编码区由10个外显子组成,编码含862个氨基酸残基的axin蛋白¨’40.鼠a】【in蛋白(r.a)【in)由832个氨基酸残基组成.associating啪lecule)结合区域(强507~712)¨4“6I、Dishevelled(简称Dvl或Dsh)结合区域(aa820,即DⅨ结构域(Dishevelled/a)(in530~712,757~757~820)口7’18]、a】【in形成寡聚体的区域(aahom01090usdomain))№1.其中N末端APc结合区域的氨基酸序列与G蛋白信号调节因子RGs4(regulatorpmteinofG—sigIlaling)的58~178位氨基酸残基有31%的相同性,这一结构域在G蛋白信号因子家族中高度保守,所以称为RGs结构域H1.aXin形成寡聚体的c末端757~820位氨基酸残基与鼠Dvl同源物Dvl.1的第8~73个氨基酸残基有37%的相同性,称为DⅨ结构域H1.最近又有新发现突触构架分子s.scAM(syn印ticscaffoldingmolecule)能与a)【in的GsK.触in含有与wnt信号途径中许多成员相互结合的功能区域∽1,如:肿瘤抑制因子肠腺息肉瘤蛋白APC(adenomatouspolyposiscoli)的结合区域(氨基酸残基3j3结合区域直接结合¨9|;周期蛋白依赖的蛋白激酶cDK2(cyclin.dependentkinase89~216,即RGS结构域)bo、蛋白磷酸酶PP2AI)结合区域2)能通过a)【in的Arg.(proteinphosphatase2A)结合区域(aa298~506/508~x.Leu(RxL)位点与a)【in结合㈣1.舨in与这些蛋白的接合模式如F阮1怛o.712)拍o、酪蛋白激酶cKI(caseinkinase(aa217—352/508—712)oL…、糖原合成激酶GsK.313Fig.1IIlter觚tingmodelofaxiIlwitllc哪ponentsoftI地wntsi印alilIgpatllway(Reference[2])2Wnt信号转导途径wnt是一个富含半胱氨酸的分泌型配体家族,解,因此细胞内的B连环蛋白总保持较低的水平心1’22|.当wnt配体与其细胞表面受体蹦zzled结合,wnt信号途径被激活时,晒zzled激活Dvl,Dvl再激活下游因子GsK一3p结合蛋白GBP(GsK一3Bbinding在果蝇里称为俩n91ess.wnt信号转导途径是在对果蝇极性发育的遗传分析和爪蟾的胚胎体轴形成研究中发现的.这一信号途径从果蝇、爪蟾到哺乳动物等不同物种中都非常保守.wnt在细胞增殖、细胞形态、细胞黏附、细胞运动、机体发育、分化等过程中起着重要调节作用¨’4J.正常情况下,细胞质内cKIa和GsK一3B依次将J3连环蛋白磷酸化,磷酸化的B连环蛋白能被泛素(ubiquitin)识别并泛素化,然后被蛋白酶复合体水pmtein),激活的GBP能识别并抑制GsK一3p的磷酸化活性,使GsK一3口不能磷酸化p连环蛋白,导致j3连环蛋白不能被泛素识别,从而不能被蛋白酶复合体降解汜2|.在细胞质中没有被降解而过量积累的B连环蛋白会转移到细胞核内,与核内转录因子LEF/TcF家族成员结合,刺激c-mw、吖c砌Dl、.胁l、c-皿n等一系列癌基因的表达,引起细胞异常增殖,最终致使细胞发生癌变心引.万方数据 第4期金利华:Axin在wnt信号转导途径中的作用2913Axin在Wnt信号转导途径中的作用Axin以构架蛋白的形式在wnt信号转导途经中起负调节作用‘1I,如Fig.2.wnt信号途径中,a】【in的RGs结构域㈨、p连环蛋白结合区域和GsK.3B结合区域‘251以及c末端DIx结构域‰1对调节B连环蛋白水平是至关重要的.Fig.2Roksofa菇ninⅡ塘Wntsig衄Ungpathway3.1p连环蛋白降解复合体有2个主要因素影响8连环蛋白的磷酸化:其一,依靠axin的构架作用将cKI、GsK一3B和p连环蛋白装配在一起;其二,cKI对|3连环蛋白Se∥的起始磷酸化作用.Axin作为构架蛋白,将APc、GSK.3p、8连环蛋白、cKIa组合起来形成』3连环蛋白降解复合体,促进|3连环蛋白的磷酸化及降解旧q….APc是在家族性大肠息肉腺瘤的研究中发现的,在wnt/0连环蛋白信号途径中起负作用,它在胞质中与D连环蛋白结合,促进p连环蛋白降解.还能通过自身的核质穿梭,调节|3连环蛋白的定位和降解‘30’”J.实验表明,结肠癌细胞中过量表达axin会明显促进G连环蛋白的降解;相比之下,缺失APc结合区域的axin突变体就失去了这一功能,说明axin的APc结合区域,即RGs结构域对其下调13连环蛋白是必需的∽4I.而且,与APc结合的a】【in比a](in自身能更有效地诱导|3连环蛋白的降解怛3I,说明APc对axin下调J3连环蛋白水平同样起着关键的作用.同样,APC也需要与axin结合才能负J3连环蛋白.APc与axin形成复合体能促进GsK.3B对8连环蛋白的磷酸化b2I.一旦APC上与axin结合的区域被破坏,APc就失去了促进J3连环蛋白降解的能万 方数据力阳3I.a】【in还能通过与之结合的cKI£促进APc的磷酸化.APc上B连环蛋白调节位点发生突变会影响APc依赖axin的cKI£磷酸化作用,使APc对8连环蛋白的调节能力降低Ⅲ1.如果只对APC的G连环蛋白结合区域进行突变,而其axin结合区域还保持完好,同样会使APc失去促进|3连环蛋白降解的能力.所以APc必须与aXin和B连环蛋白同时结合才能有效地促使|3连环蛋白降解.CKI和GSK一3B对APC的磷酸化提高了APc与p连环蛋白的亲合性.对APc与p连环蛋白结合体的晶体结构分析表明,APc上B连环蛋白结合位点的磷酸化是由cKI和GsK一3j3互相合作引导进行的,axin在该磷酸化中起构架蛋白作用.Axin与磷酸化的APc竞争地结合在8连环蛋白的同一面b5_7I.xing等人对p连环蛋白与a】(in.cBD(p.cateninbindingdo啪in,矧n的p连环蛋白结合区域)结合体的晶体结构分析发现,aXin—cBD形成一个a螺旋,占据了B连环蛋白的第3、4个amadillo重复序列形成的沟槽,阻止了B连环蛋白的其它结合蛋白在这里的结合.当APc被磷酸化后,就会与axin竞争性地结合在p连环蛋白上.推测APc在调节口连环蛋白过程中的另一关键作用就是将磷酸化的|3连环蛋白从axin/APc/GsK.3p复合体中转移出去,使p连环蛋白被泛素化从而降解旧8|.choi等人发现,APc自身水平也能通过泛素一蛋白酶复合体下调.在APc的泛素化及降解过程中,商n通过DIx区域形成自身寡聚体促进这一泛素化降解作用旧….在Sw480细胞中缺失B连环蛋白结合区域的a)【in突变体不能下调p连环蛋白.同样,缺失GsK一3p结合区域的axin突变体也丧失下调J3连环蛋白的功能㈨o.说明axin必须同时与18连环蛋白和GSK.313结合才能下调13连环蛋白水平.这些都说明了通过axin形成aXin/APc/GsK一3B/B—catenin/cKIa降解复合体的重要性.Axin的DIX结构域Axin通过其c末端形成同源寡聚体.Axin如果缺失了c末端,即使它能结合GsK一313和p连环蛋白,也不能下调胞内』3连环蛋白水平.用不相关的二聚分子类维生素Ax受体RxR(retinoidxreceptor)最近,在斑马鱼中又发现一种新的含有DIx结3.2代替c末端使aXin重新二聚化之后,就能恢复其负的功能怛5。.故通过c末端形成寡聚体是axin调节j3连环蛋白所必需的.292中国生物化学与分子生物学报22卷构域的蛋白ccdl.它能通过DⅨ结构域与Dvl和axin形成同源和异源寡聚体,激活依赖TcF转录因子的转录H1I.斑马鱼胚胎中过量表达ccdl会导致前脑和眼睛变小.这与wnt8基因的过量表达产生的效果一致.但是显性负作用的ccdl(DN.Ccdl)却会导致相反的效果.而且ccdl诱导的wnt活性表型能够被axin或DN.ccdl的表达抑制,说明ccdl是在wnt受体下游和aXin的上游发挥作用的m’43].但是axin在wnt信号途经中的作用是否要受ccdl的还不清楚.3.3心n的核质穿梭对p连环蛋白的影响对果蝇的遗传学研究表明,aDcin除了在细胞质中作为构架蛋白形成复合体增强B连环蛋白的降解以外,还存在另外一个与此的机制下调B连环蛋白水平:它能通过核质穿梭,促进8连环蛋白定位于细胞质㈨椰o.Axin具有核输出信号序列NEs(nuclearexportsequence)(aa538~547)和c末端双向的核定位序列NLS(nuclearlocaHsationsignalsequence)(aa849—865).核质穿梭的a)【in作为一种分子伴侣,协同G连环蛋白在细胞核或者细胞质中的分布.当用出核通路特异抑制剂leptomycinB处理细胞时,axin便不能自由进行核质转移,积累于细胞核内‘43.4不同的wnt受体对p连环蛋白的调节wnt能通过Dvl来抑制aDcin多蛋白复合体的活动.cliffe等人研究表明,win91ess信号能使果蝇中aXin从细胞质转移到细胞膜,这一转移过程依赖于细胞质中的DvlH“.Dvl使axin重新分布是wnt信号通过axin调节J3连环蛋白的机理之一.除了七重跨膜受体蛋白Frizzled家族能接受wnt信号,单重跨膜蛋白LRP家族(LDL—receDtor-relatedprotein5,6/Arrow)也能接受并转导wnt信号。4….Mao等人发现axin与LRP5的胞内部分结合,该结合将axin拉到细胞膜处‘12I.Tol衍nski等人又发现A盯ow能将axin拉到细胞膜处,导致axin的降解,使胞内没有足够的axin参与B连环蛋白的降解作用,从而加强了胞内|3连环蛋白的积累H8I.LRP5,6/A啪w与Frizzled在功能上是合作受体的关系∽’5共同调节axin的降解.所以aDcin蛋白的稳定性也是它在wnt信号转导途径中的调节机制之一.3.5GSK.3p和CDK2对axin的磷酸化作用Axin在wnt信号途径中作为构架蛋白,促进GsK一3B对B连环蛋白的磷酸化作用.在这个过程中,GsK一3|3同样使axin自身发生磷酸化.磷酸化的万 方数据axin增加了它与|3连环蛋白的亲合性bh52|.r-axin的SANDSEQQS330、SDADTLsLrId41和SLTDS343可能就是GSK.313对a)【in的磷酸化位点心3’.Axin被磷酸化后稳定性增强.因此GSK.38对axin和p连环蛋白的磷酸化作用导致两个相反的结果:对axin的磷酸化使其稳定,而对13连环蛋白的磷酸化使其降解.aXin作为构架蛋白,其稳定性增强也更加有利于它促进B连环蛋白的降解”3|.Kim等人研究表明,cDK2能通过axin的Arg.x.Leu位点与axin结合,并且cyclinA/cDK2也能使Axin磷酸化.Axin有10处cDK2磷酸化位点,都定位在_B连环蛋白结合区域,这些磷酸化位点也是GsK一38的作用位点.cyclinA/cDK2对a】【in的磷酸化作用同样增强了aDcin与8连环蛋白的结合㈨3.GsK.3|3和cDK2存在一些共同的特点,它们有相似的结构,并且都催化靠近Pm的ser/nr磷酸化位点,这也是axin能成为两种激酶的底物的原因.但是cvclinA,cDK2催化的磷酸化没有增强它对GsK.38的亲合性.值得注意的是,cyclinA/cDK和cyclinE/cDK复合物都能穿梭于核质之间,表明这些复合物能直接对细胞质中的axin磷酸化。20o,所以cvclin/CDK2这种细胞周期调节因子,通过调节axin的磷酸化在wnt信号通路中负调节B连环蛋白.3.6其它因子对axin下调p连环蛋白的影响突触构架分子s.sCAM是一种含有后突触密度相关结构域PDz(postsynapticdensitydomain)、鸟苷酸激酶区域和ww区域的突触蛋白,它能与GsK.3』3竞争性地结合在axin上,与8连环蛋白、axin形成复合体,因此s—scAM能抑制axin通过GsK.3B对|3连环蛋白的磷酸化作用¨….转录抑制因子I—n血和含I.n血区域的蛋白HIc(humanI—H血domain.containingpmtein)也能通过它们共有的c末端I—r-如区域与aXin结合,抑制axin下调J3连环蛋白¨….4Axin通过Wnt信号途径调节的生物学效应4.1抑制体轴发育僦流突变的胚胎会产生双向体轴.爪蟾胚胎中注射axin会产生严重的体轴缺陷,说明aXin是体轴发育抑制因子¨4。….Axin能抑制wnt、Dvl和GSK一3J3诱导的二向体轴的形成,而不影响B连环蛋白和siamois诱导的二向体轴的形成‘57|;注射noggin或显性负调节的骨形态发生蛋白受体也能导致二向体轴第4期金利华:Axin在wm信号转导途径中的作用293的形成,但是aXin却不能阻断这个诱导作用.说明axin调节体轴发育主要是通过抑制wnt信号转导途径来完成的Ho.在爪蟾胚胎中注射缺失DIx结构域的axin突变体不能表现出明显的体轴抑制效果,表明axin的c末端DIx结构域在该过程中起着重要作用‘川.4.2诱导细胞死亡由于8连环蛋白可通过激活癌基因表达引起细胞异常增殖,而axin又可下调B连环蛋白水平,因此,axin被认为是一个非常重要的肿瘤抑制因子.Hsu等人通过转基因研究证明axin的高表达可引起体内细胞凋亡b“,satoh等人发现功能缺失的axin突变体能使j3连环蛋白稳定和积累,腺病毒转染野生型axin到axin或APC突变的癌细胞,导致8连环蛋白降解及细胞凋亡b9I,都说明瓢in是肿瘤抑制因子.4.3参与神经元的分化Axin也参与神经元的分化过程.胚胎癌细胞P19EC是一种能被视黄酸(RA)刺激分化的细胞.在未分化的P19EC细胞中能检测到axin的表达.但是,当RA诱导细胞逐渐分化为神经元细胞的过程中axin的表达量明显减少.而在由RA诱导分化为内皮层细胞的过程中未见axin表达水平的减少.在内皮层和早期神经元分化过程中诱导aXin表达,不会抑制内皮层分化,但能抑制神经元分化旧o.所以axin水平下降是神经元分化特有的特点,wnt信号途径通过下调axin的水平在神经元的分化过程中起着重要作用.在成神经细胞瘤N2a(Neum一2a)细胞中,wnt信号能抑制GsK一3p的激酶作用并导致13连环蛋白积累.锂离子处理也能起到类似的效果.锂离子和GsK.3J3的抑制剂都能诱导N2a细胞突的生长,但是锂离子诱导细胞神经突的生长时J3连环蛋白的转录活性不会上升,GsK一313的底物axin稳定性降低.过量表达的aXin能抑制锂离子诱导的神经突的生长,这一过程中GsK一38结合区域是必需的,而p连环蛋白结合区域显得不重要,表明aXin和GsK一38参与了神经细胞神经突生长的信号转导过程№“.5结语Axin自从被克隆以来就成为了一个非凡的多向性构架蛋白.Axin除了能与wnt通路中的重要成员结合并参与该通路的作用以外,还能与JNK、p53、TGF—p等多种重要信号转导途径中的多种蛋白万 方数据相互结合,因而它可能介导了wnt通路与其它信号通路之间的功能交叉,从而在细胞命运决择和肿瘤发生的抑制方面起着关键的作用.在研究axin在wnt信号途径发挥多重功能的机理的同时,对瓤in在不同肿瘤组织中检测突变的研究也从另一方面证实了aXin的抑癌功能.已有报道表明,似流1基因在肝癌b9’62州o、成神经管细胞瘤旧]、结肠癌旧]、膀胱癌旧1等肿瘤组织中都存在不同频率的突变,很多突变都影响了axin在wnt信号途径中的正常调节功能,使肿瘤组织细胞中B连环蛋白产生积累.说明axin作为肿瘤抑制因子,其突变导致的功能缺陷可能是导致肿瘤发生的根源之一.嬲流1基因突变的检测可能作为肿瘤的一种诊断方式.AXin通过wnt信号转导通路调节细胞增殖、凋亡等机理的研究,对探索axin在各种癌症治疗方面的应用前景具有重要的指导意义.参考文献(References)1KikuchiA.R0lesofAxininthewntsignalli“gpathway.&盯甄,,脚,1999,11(11):777~788Luow,“nSC.A]£in:masterscaⅡbldformultiplesignaliIlgpathways.Ⅳe“瑚咖口厶,2004,13(3):99—113Ze“gL,FagottoF,Zh舳gT,HsuW,VasicekTJ,PerryWL3rd,【船JJ,TilghmanSM,GumbinerBM,costantiniF.11le啪useFusedlocusencodesAxin,inhibitor0ftheWntsi印““gpathw8ythat”gtIlateserIlbryonica]【isforIIlation.&f2,1997,帅(1):18l一1924KikuchiA.ModulationofwntsigIlali“gbyAxinaIldAxil.C如。七f鹏G而"m,k£or尺。,1999,10(3.4):255—2655KishidaS,YamaITlotoH,IkedaS,KishidaM,SakamotoI,Kov啪aS,KikuchiA.Axin,anegativeregulatorofthesi印ali“gpathway,direcnyinteractswithadenomatouspo】yposiscoliandr。glllatesthestabilizationofbeta.catenin.JB幻ZCkm,1998,273(18):10823~10826HsuW,Ze“gL,CostantiniF.Identi6calionofdon西nofAxinthatbindsthese血e,threonineproteinphosphat髂e2Aandself_bindingdoHlain.JBiofCkm,1999,274(6):3439~3445zha“gY,QiuWJ,LiuDX,NeoSY,Hex,LinSC.DifferentialmolecularassembliesundediethedualfunctionofAxininmodIllati“gtheWntandJNKpathways.JB幻z(冼em,2001,276(34):32152—32159zh8ngY,QiuWJ,ChanSC,HanJ,Hex,LinSC.C船einkinaseIandcaseinkinaseⅡdi雎rentiallyregIllateAxinfunctioninWnt蛐dJNKpathways.,B“c^em,2002,277(20):17706~177129IkedaS,KishidaS,Yam蛐otoH,MuraiH,KoyamaS,l(ikuchiA.Axin,n。gativeregIllatoroftheWntsigIlali“gpathway,fbnmcomplexwithGsK3betaandbet驴cateninaIldpmmotesGSI(3beta-d。pendentphosphorylationofbeta—catenin.册0,,1998,17(5):1371一138410Schw眦一RomondT,AsbrandC,BakkersJ,KuhlM,Sch跎雎rHJ,294中国生物化学与分子生物学报J,J,W.Thebeta·2522卷HuelskenBehrenspmteinHamnle璐chIIlidtrecnlitsM,BirchIneierkina8eIE1998,8(10):573—581蛐kyrincateIlinIepeatdive商ncaseinto山eD8j蛐iR,Fr够erE,R0eTC,Pe盯ll【inaseLsM,Ye0M,G00dbasisforVM,Thomp∞nofV,DaledegradationcoHIplex锄d∽tsinbothcaIlonicalwm蛐dWnt,H.‰ctuIaltllerecnlit眦ntglycogen8ylltllaseJNK11sigIlaling.&WDd,2002,16(16):2073~2084T,CaldweUK,O’KeefeL,schwartzS,Vaizel—E,ToIIlliIIsonA,DiNardoS.AⅡuw3betaaxin.APC∞柚foldcomplex.E^f日0J,2003,22WehrliM,Do“g蛐SOhay仰D,Schejter(3):494~50126encodes柚Sak帅al【atIleCC,Wiui枷sLT.Functionaldomainsof麟in—import蛐ceofLDheceptor_relatedproteinesseInialforwingless8i印aling.№t删,temin∞船船oligomerizationdonlain.J胁ZinCkm,1999,2742000,4盯(6803):527—53012(20):14090~14093GHM∞J,W朋gJ,LiuB,P帅W,Farr3rd,nynnC,Yu卸H,lipoproteinmcept0卜27Pe如rM,PoL出sP.Wntsi印aliIIg100koutsidetlleoncogenesis卸deIllbryogenesis-a1址adaS,鼬melr岫nD,UL,WuD.kw.deIl8ityrelatedprotein一5bindsnucleu8.&话nce,20()o,287(5458):1606—1609M,HiUV,YochumA,VirshuptIleDM.Caseinde乎乜d砒ionto血in卸d喇;Ill8testllecanonicalWntsigllaling28GaoZH,S∞HngJIpathway.^fof&肛,2001,7(4):80l~80913kinasewithph08phorylates趴ddestabili嬲sbeta-cateninKu咖oS,Raab-TraubN.I一Ⅲfadominprotei璐interactandAxin蛐dcomplex.Pmc肌“A∞dSd嬲A,2002,鲫(3):1182一118729HinoS,Michiue如ct14itsregIll砒ionofthewntc-JunN—terIIlinalkiIlasesignalillgT,A钳8hi啪M,KikuchiA.Ca∞inkina∞Iis船∞ntialforepsilonpathways.肼甜ce盯口捌,2002,22(18):6393~6405KadoyaT,KishidaS,FukuiA,HinoiT,Michiueenh如cesthebindingofDvl一1F豫t-1andWnt一3a-T,Asaslli眦M,novdAxin.bindi“g30inducedaccumulationof14066一14073beta.catenin.JB“CJlem,2003,278(16):晒kuchiA.Inhibition0fWntsigIlali“gpat}1waybyprotein.JBi以Ckm,20()o,275(47):37030一3703715NishidaHende啪nnuclearBR,F唧ttoF.nein8蛐d0fAPC彻dbeta-cateninT,K蛐ekoF,KitagdwaM,Y踮udaH.Characterization0ftⅧ1sport.励佃0脚,2002,3(9):834~839R,CliffeA,B珀bletzT,BienzM.Nuclear∞velmtm栅maliaIlwhichSUM0—1,Smt3一specmcisopeptid∞e,aisho啪logIIe《beta.catenin31Rosin-Arbe如ldofax啪,卸axin.bindi“gproteinpIomotingtlleAPCtuⅡmrsuppre黯orcontmlsbeta—cateninfunctionint砌scription.d哪dati∞..,尉以c^∞i,2001,276(42):39060一3906616KadoyaE^佃O.,,20(B,22(5):】101~111332HinoiT,Yama啪toT,Tanal【aH,Su踟kiT,YukitaA,FukuiA,MichiueT,T,Yam舢toofH,KishidaM,TakadaS,KishidaS,KikuchiA.productanda】【inofAsallmofK,As鹊himaM,KikuchiA.DesumoylationactivitycomplexforII姘ionfacilitate8ade∞眦tou8polyposiscoligeneAx锄,anovelAxin-bindi“gprotein,isinv01vedindownreglllationofgIycogensyIIth够ekina鸵一3beta—d8pendentphosphorylationbeta.catenin.肘甜C础B“,2002,22(11):3803—381917KishidaS,Yamamot0H,HinoS,IkedaDIXS,l(ishidaM,KikuchiA.33beta—catenin粕ddown—regIllatesbeta-catenin.J曰抽ZCkm,2000,275(44):34399—34406KawaharadominsofDvlandAxinnecessaryforpmteinimeractionsaIldK,M面shitaT.T,NakamumT,HamadaF,T0yoshimaK,colorectaltumortheirabilityregulatebeta-cateninstability.胁Z例Z肋f,1999,19E,FagouoF,34Akiy啪aDown—reglllationofbeta—c8teninwithbythe(6):4414—442218suppressorApCreqIlires鹊sociationAxin锄dbeta—catenin.J曰谢JuliusMA,schelbenB,HsuW,FitzpatrickE,Jllo饥em,2000,275(12):8369~8374RubinfeldB,TiceDA,PolakisP.Axin-d。pendentproteinmediatedbyC0st蛐tiniF,KitajewskiJ.DoInainsof戕ininteractionandfunctioninanddisheveledreqIliredforphosphorylationc鹊einkinaseI.ofsi印aling.肋ckmB卸^声鼢S,Kikuchi35theadenomatou8polyposiscoliJCb肼nun,20()o,276(3):1162~116919B埘纨m,2001,”6(42):39037—39045sak粕akakin舾eC,IJeongP,XuHimbayashiA,TanakaS,NishimuraN,Ha诅Y.W,IidaJ,KansakuA,KishidaL,Ha而sonSD,WilliamsLT.Caseinsyn印ticseaffoldi“g啪leculeinteract8withIepsiloninthesciWntpathway:regIllationofbeta—cateninfunction.“in.JMuroc_Ilem,2004,如(2):332—33920KimSI,ParkCdependentkinaseProc^h“A∞dEusA,1999,%(22):12548一12552M,MatsuuraY,Usui0fadenonmtou8andH,KikuchiA.GSK3beta.gene2AproductS,keMS,KwonMS,JhoH,S0“gWK.Cyclin—36IkedaS,Kishida2regIllatestheinteractionofAxinwithbeta—catenin.d8pendentph08phorylationpolyPosiscoliBiockm2lB泖^”鼢co肼n帆,2004,317(2):478~483J,Ki8pertA,KeHderR.beta—cateninc粕bewith37modulatedbybeta-cateninprotei“phosphatasecomplexedAbedeHA,BauerA,StappertisAxin.0∞曙∞e,2000,19(4):537~545targetfortheubiquitiIl—pmteasomepathway.E枷OJ,1997,16HaNC,TonozukaT,Sta咖sJL,ChoiHJ,WeisWI.Mechanismofin(13):3797—380422LiuC,LiY,semenovX.ContmlofM,HaIlC,BaegGbeta-cateninphosphorylation-dependentbindi“gofAf)cbeta-cateninanditsmleH,7r粕Y,ZllangZ,“nbybeta-catenin38Xi“gde铲adation.胁fWC扰,2004,15(4):51l~52lW.CrystalfortheX,Hephosphorylation/degradationY,CleⅡlentsK,KimelmanD,Xus“ggest80fdual.kin∞e23Karimmechanism.例Z,2002,108(6):837—847T,scolyerR,IJeeS.Thebeta-caten耐a]【incomplexofth8HlechaIlismbeta-cateninR,TseG,Puttiwntpa£hwayjnthepat}lologyofhumncaflcers.凡蝴,2004,36N,Rubir如ldB,P0lal【isP.withGSK3si卵ificallcedestmction39Choicomplex.&M胁,2003,17(22):2753~27“SJ,ParkY,Cost蛐ciniF,JhoEH,J00CK.Adenomatou8(2):120~12824HartMpolyposiscoliisdown’re昏llatedlosSantosR,Alb£InIbytheubiquitin-proteasomepathwayinJ,depmcessf如ilitatedbyA】【in.JBioZCkm,2004,”9(47):49188~DownregIllationofbeta—catenintlIeAPCtumorbyhum粕A五n卸dits器soci撕on4919840Nakamurasuppressor,beta-cateninandbeta.C价口i以,T,H枷adaF,IshidateT,AnaiK,Kawa}IaraK,1研oshima万方数据 第4期金利华:Axin在wm信号转导途径中的作用295K,Akiy姗T.Axin,锄inhibitoroft}leWntsigIl出“gpathway,intemctswitllbeta-catenjn.GSK.3beta蛐dAPCandreducesthebeta.cateninIevel.白Ⅻce凰,1998,3(6):395~40341WongCK,LuoW,DengY,ZouH,YeZ,“nSC.TheDIXDomainPIDteinCoiled.coil—DIXlInhibitsc—JunN.te肌inalKin船eActivationbvAxin蛐dDisheveUedthrougllDistinctMechanis眦.,B“c^册,2004,279(38):39366—3937342ShiomiK,UchidaH,Keino-M鹊uK,M鼬uM.Ccdl,anovdproteinwithDⅨdom越n,isp帼itiveq—atorinthewntsig【lalingdIIringzeb础shneuralpattemi“g.Cm曰埘,2003,13(1):73—7743shioIIIiK,KanemotoM,Keino-M鹊uK,YoshidaS,SomaK,M娼uM.Ide眦ificationanddiffe陀“alexpressionofmIlltiplei80fom峙ofmousecoiled.coil·DIxl(ccdl),apositiveregIllatorofwntsi刚i“g.Br击ⅡJ0懿肘甜Br0讯R黜,2005,135(1-2):169~18044c彻gF,V8瑚usH.Nucle妒。y£opl鼬商cshu址hngof心n地glJla鼢subceUIll盯localizationofbeta-catenin.Proc^kZAc甜sciHsA,2004,lOl(9):2882~288745wieche船N,HeiIlleK,ErlglmeierL,ScholIlA,FagottoF.Nucleo-cytopl∞micshutdi“gofAxin,anegativeregIIl砒or0fthewnt—beta-cateninPathway..,Bi甜Ckm,2004,279(7):5263—526746WjechensN,FagottoF.CRMl·卸dR蛐-jnd印end棚tnuclear麟ponofbeta-catenin.仇rrB“,2001,1l(1):18一”47Cli舱A,H鲫adaF,Bie眦M.AmleofDishevelledinrelocatingAxinthepl船mmembmneduringwindess8i印aliIlg.cl上丌。舶z,2003,13(11):960一96648T01wiIlskiNS,WehrliM,RivesA,ErderIizN,DiNardoS,WieschusE.wg,wntsigMlbetm璐mittedthrouglla咖w,LRP5,6aIldAxinindependentlyofZw3,Gsk3betaacdvity.踟ce2Z,2003,4(3):407~41849SchweizerL,V删usH.wn“wingle蟠sigIlalingthmughbeta-catellinrequiresthefunctionofbothLRP,Arrowand抽踞ledcl鹊sesofreceptors.B肼CCeffB幻Z,2003,4:450HeX,SemenovM,TamiK,Ze“gX.LDLreeeptor.rela砌proteins5and6inWnt,beta-cateninsigIlali“g:aⅡDwspointtheway.D吼℃fopme眦,2004,131(8):1663~167751Ha眦daF,Tomoy咖Y,T出nsuY,Nal【锄umM,NagajS,SuzukiA,FujitaF,ShibuyaH,ToyoshimaK,UenoN,AkiyamaT.N89砒iveregulationofwingle8ssigIlali“gbyD—a)【in,aDr05叩^以Ⅱhomologofa]【in.Scj!e,lce,1999,2s3(5408):1739一174252Yama咖toH,KishidaS,KishidaM,IkedaS,TakadaS,KikuchiA.Phosphorylationof缸in,awntsi印alnegativeregIllator,byglycogen8ynth∞ekin∞e-3betaregulatesitsst8bility.JBiof‰m,1999,274(16):10681—1068453T01winskiNS,Wieschau8E.Retllinki“gWntsigIlali“g.m础&删,2004,20(4):177一18l54FukuiA,KishidaS,KikuchiA,As鹊himaM.EffectsofA)cindomains8)【isfonnationinxenopuseIIlbryos.D删‰帆D咖r,万 方数据2000,42(5):489~49855ItohK,KmpnikVE,SokolSY.AxisdeteminationinXenopusinvolvesbiocheIIlicdinte强ctionsofa】cin,glycoge“synthasekinase3蛐dbeta.catenin.CmB埘,1998,8(10):59l~59456Kof如nM,ⅪeinP,zh肌gF,H0ustonDw,schaibkK,WylieC,He鹊哪J.7rheroleofII埘eⅡlal缸ininpattemi“gtlleXen叩usenIbryo.踟B捌,200l,237(1):183—201.57B咖∞M,G0mpertsM,Su咖yL,M00nRT,l(i啪l咖D.Abeta-cateIliIl/xTcf-3complexbindsthesi咖i8pmmoterregulatedo瑙aia】【isspecificationinXenopus.&rⅫ肋,1997,ll(18):2359~237058H鲫w,shakyaR,Costa以niF.Impairedmam嘶Lrydand蛐dlymphoiddevelopⅡlentc肌sedbyinducibleexpressionof心nintmsgenicIIlice..,&雎B洲,200l,155(6):1055~106459SatohS,Dai80Y,FurukawaY,KatoT,MiwaN,Ni8hiwakiT,Kaw鼬0eT,Ishigur0H,F坤taM,Toki加T,SasakjY,Im∞kaS,MurataM,Shi眦noT,Y砌∞kaY,N8k咖umY.AXINlmutationsinhepatI)ceuul盯carcino啷,锄dgrowtllsuppre鹪ionincellsbyvinls.rrlediatedtmndferofAxINl.^协&恻,2000,24(3):245—25060LyuJ,Cost明tiniF,JhoEH,JooCK.EctopicexpressionofAxinblocksneuronaldi髓I-ennalion0fembryonjccar:cj肿ⅡmP19ceus._,B埘Ckm,2003,278(15):13487~13495610珈eMH,Gi肌niniAL,Vi啪coMD,蛐dKyptaRM.Glycogensyntllasekina8e一3锄dAxinfunctioninbeta—catenin.independentpathwaythatreglllatesneuriteoutgm砒hinneumbl够to啪cells.肘以例f^kⅡr邯d,2003,24(3):673~68662IshizakiY,IkedaS,FujimoriM,ShindzuY,Kurih锄T,It棚ot0T,KikuchiA,Okaji呦M,Asa}I啪T.Immunohistochemical8nalysis明dmutation8l蚰alysesofbeta-catenin,AxinfaIIIilyandAPCge眦sinhepatocellularcarcinom∞.加J0M£,2004,24(5):1077~108363MiaoJ,KusafukaT,UdatsuY,0kadaA.Se口uencevari蛐ts0ftheAxi“geneinhep砒obl鹊to咖.^卸Ⅲ甜胍,2003,25(2):174一17964T柚igIlchiK,RobertsLR,AdercaIN,Dongx,QianC,MurphyLM,NagomeyDM,Bu。gartLJ,R0chePC,SIIlithDI,RossJA,“uW.MutatiorLalspectnlmofbeta_catenin,AXINl,andAXIN2inhepatoceUularcarcinom粕andh8patobl鹊tomas.0聊99e聊,2002,21(31):4863~487165DallnlenRP,KochA,Denkh叫sD,TonnJC,SorensenN,BertholdF,BehrensJ,BirchmeierW,WiestlerOD,PietschT.DeletionsofAxINl,componentofthewNT,windessPathway,insporadicMedulloblastomas.C口,lcer如s,2001,6l(19):7039~7043JinLH,Sha0QJ,Luow,YezY,“Q,“nsc.Detection0f耐ntmutations“theAxinlgeneincolorectalcancers.胁J%,脚’,2003,107(5):696—699D舳T,K鹊himaK,Kal【uN,SuzukiM,YokoyamaS.Mutationsincomponents“tlleWntsigIlalingpathwayinadenoidcy8ticcaI℃inoma.胁d砌_IlDZ,2004,17(12):1475~14826667Axin在Wnt信号转导途径中的作用

作者:作者单位:刊名:英文刊名:年,卷(期):被引用次数:

金利华, 李勤喜, 叶志云, JIN Li-Hu, LI Qin-Xi, YE Zhi-Yun

金利华,JIN Li-Hu(厦门大学生物医学工程研究中心,厦门,361005), 李勤喜,叶志云,LIQin-Xi,YE Zhi-Yun(厦门大学生命科学学院,厦门,361005)中国生物化学与分子生物学报

CHINESE JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY2006,22(4)0次

1.Kikuchi A Roles of Axin in the Wnt signalling pathway 1999(11)

2.Luo W.Lin S C Axin:a master scaffold for multiple signaling pathways 2004(03)

3.Zeng L.Fagotto F.Zhang T.Hsu W Vasicek T J Perry W L 3rd Lee J J Tilghman S M Gumbiner B MCostantini F The mouse Fused locus encodes Axin,an inhibitor of the Wnt signaling pathway thatregulates embryonic axis formation 1997(01)

4.Kikuchi A Modulation of Wnt signaling by Axin and Axil 1999(3-4)

5.Kishida S.Yamamoto H.Ikeda S.Kishida M Sakamoto I Koyama S Kikuchi A Axin,a negative regulator ofthe wnt signaling pathway,directly interacts with adenomatous polyposis coli and regulates thestabilization of beta-catenin 1998(18)

6.Hsu W.Zeng L.Costantini F Identification of a domain of Axin that binds to the serine/threonineprotein phosphatase 2A and a self-binding domain 1999(06)

7.Zhang Y.Qiu W J.Liu D X.Nco S Y He X Lin S C Differential molecular assemblies underlie the dualfunction of Axin in modulating the Wnt and JNK pathways 2001(34)

8.Zhang Y.Qiu W J.Chan S C.Han J He X Lin S C Casein kinase I and casein kinase Ⅱ differentiallyregulate Axin function in Wnt and JNK pathways 2002(20)

9.Ikeda S.Kishida S.Yamamoto H.Murai H Koyama S Kikuchi A Axin,a negative regulator of the Wntsignaling pathway,forms a complex with GSK3beta and beta-catenin and promotes GSK3betadependentphosphorylation of beta-catenin 1998(05)

10.Schwarz-Romond T.Asbrand C.Bakkers J.Kuhl M Schaeffer H J Huelsken J Behrens J Hammerschmidt MBirchmeier W The ankyrin repeat protein diversin recruits casein kinase Iε to the betacatenindegradation complex and acts in both canonical Wnt and Wnt/JNK signaling 2002(16)

11.Wehrli M.Dougan S T.Caldwell K.O' Keefe L Schwartz S VaizelOhayon D Schejter E Tomlinson ADiNardo S Arrow encodes an LDL-receptor-related protein essential for Wingless signaling 2000(6803)12.Mao J.Wang J.Liu B.Pan W Farr G H 3rd Flynn C Yuan H Takada S Kimelman D Li L Wu D Low-densitylipoprotein receptorrelated protein-5 binds to Axin and regulates the canonical Wnt signalingpathway 2001(04)

13.Kusano S.Ranb-Traub N I-mfa domain proteins interact with Axin and affect its regulation of theWnt and c-Jun N-terminal kinase signaling pathways 2002(18)

14.Kadoya T.Kishida S.Fukui A.Hinoi T Michiue T Asashima M Kikuchi A Inhibition of Wnt signalingpathway by a novel Axin-binding protein 2000(47)

15.Nishida T.Kaneko F.Kitagawa M.Yasuda H Characterization of a novel mammalian SUMO-1/Smt3-specificisopeptidase,a homologue of rat axam,which is an axin-binding protein promoting beta-catenindegradation 2001(42)

16.Kadoya T.Yamamoto H.Suzuki T.Yukita A Fukui A Michiue T Asabara T Tanaka K Asashima M Kikuchi A Desumoylation activity of Axam,a novel Axin-binding protein,is involved in downregulation of beta-catenin 2002(11)

17.Kishida S.Yamamoto H.Hino S.Ikeda S Kishida M Kikuehi A DIX domains of Dvl and Axin are necessaryfor protein interactions and their ability to regulate beta-catenin stability 1999(06)

18.Julius M A.Schelbert B.Hsu W.Fitzpatrick E Jho E Fagotto F Costantini F Kitajewski J Domains ofaxin and disheveled required for interaction and function in wnt signaling 2000(03)19.Hirabayashi S.Nishimura W.Iida J.Kansaku A Kishida S Kikuchi A Tanaka N Ham Y Synapticscaffolding molecule interacts with axin 2004(02)

20.Kim S I.Park C S.Lee M S.Kwon M S Jho E H Song W K Cyclindependent kinase 2 regulates theinteraction of Axin with beta-catenin 2004(02)

21.Aberle H A.Bauer A.Stappert J.Kispert A Kemler R beta-catenin is a target for the ubiquitin-proteasome pathway 1997(13)

22.Liu C.Li Y.Semenov M.Han C Baeg G H Tan Y Zhang Z Lin X He X Control of beta-cateninphosphorylation/degradation by a dual-kinase mechanism 2002(06)

23.Karim R.Tse G.Putti T.Scolyer R Lee S The significance of the Wnt pathway in the pathology ofhuman cancers 2004(02)

24.Hart M J.de los Santos R.Albert I N.Rubinfeld B Polakis P Downregulation of beta-catenin by humanAxin and its association with the APC tumor suppressor,beta-catenin and GSK3 beta 1998(10)25.Dajani R.Fraser E.Roe S M.Yeo M Good V M Thompson V Dale T C Pearl L H Structural basis forrecruitment of glycogen synthase kinase 3beta to the axin-APC acaffold complex 2003(03)26.Sakanaka C.Williams L T Functional domains of axin-importance of the C terminus as anoligomerization domain 1999(20)

27.Peifer M.Polakis P Wnt signaling in oncogenesis and embryogenesis-a look outside the nucleus2000(5458)

28.Gao Z H.Seeling J M.Hill V.Yochum A Virshup D M Casein kinase I phosphorylates and destabilizesthe beta-catenin degradation complex 2002(03)

29.Hino S.Michiue T.Asashima M.Kikuchi A Casein kinase I epsilon enhances the binding of Dvl-1 toFrat-1 and is essential for Wnt-3a-induced accumulation of beta-catenin 2003(16)

30.Henderson B R.Fagotto F The ins and outs of APC and beta-catenin nuclear transport 2002(09)31.Rosin-Arbesfeld R.Cliffe A.Brabletz T.Bienz M Nuclear export of the APC tumor suppressor controlsbeta-catenin function in transcription 2003(05)

32.Hinoi T.Yamamoto H.Kishida M.Takada S Kishida S Kikuchi A Complex formation of adenomatouspolyposis coli gene product and axin facilitates glycogen synthase kinase-3 beta-dependentphosphorylation of beta-catenin and down-regulates beta-catenin 2000(44)

33.Kawahara K.Morishita T.Nakamura T.Hamada F Toyoshima K Akiyama T Down-regulation of beta-cateninby the colorectal tumor suppressor APC requires association with Axin and beta-catenin 2000(12)34.Rubinfeld B.Tice D A.Polakis P Axin-dependent phosphorylation of the adenomatous polyposis coliprotein mediated by casein kinase I 2001(42)

35.Sakanaka C.Leong P.Xu L.Harrison S D Williams L T Casein kinase Iepsilon in the Wntpathway:regulation of beta-catenin function 1999(22)

36.Ikeda S.Kishida M.Matsuura Y.Usui H Kikuchi A GSK3beta-dependent phosphorylation of adenomatouspolyposis coli gene product can be modulated by beta-catenin and protein phosphatase 2A complexedwith Axin 2000(04)

37.Ha N C.Tonozuka T.Stamos J L.Choi H J Weis W I Mechanism of phosphorylation-dependent binding ofAPC to beta-catenin and its role in beta-catenin degradation 2004(04)

38.Xing Y.Clements W K.Kimelman D.Xu W Crystal structure of a beta-catenin/axin complex suggests amechanism for the beta-catenin destruction complex 2003(22)

39.Choi J.Park S Y.Costantini F.Jho E H Joo C K Adenomatous polyposis coli is down-regulated by theubiquitin-proteasome pathway in a process facilitated by Axin 2004(47)

40.Nakamura T.Hamada F.Ishidate T.Anai K Kawahara K Toyoshima K Akiyama T Axin,an inhibitor of theWnt signaling pathway,interacts with beta-catenin,GSK-3beta and APC and reduces the betacateninlevel 1998(06)

41.Wong C K.LuoW.Deng Y.ZouH YeZ LinSC The DIX Domain Protein Coiled-coil-DIX1 Inhibits c-Jun N-terminal Kinase Activation by Axin and Dishevelled through Distinct Mechanisms 2004(38)42.Shiomi K.Uchida H.Keino-Masu K.Masu M Ccd1,a novel protein with a DIX domain,is a positiveregulator in the Wnt signaling during zebrafish neural patterning 2003(01)

43.Shiomi K.Kanemoto M.Keino-Masu K.Yoshida S Soma K Masu M Identification and differentialexpression of multiple isoforms of mouse Coiled-coil-DIX1 (Ccd1),a positive regulator of Wntsignaling 2005(1-2)

44.Cong F.Varmus H Nuclear-cytoplasmic shuttling of Axin regulates subcellular localization of beta-catenin 2004(09)

45.Wiecbens N.Heinle K.Englmeier L.Schohl A Fagotto F Nucleocytoplasmic shuttling of Axin,a negativeregulator of the Wnt-betacatenin Pathway 2004(07)

46.Wiechens N.Fagotto F CRM1-and Ran-independent nuclear export of beta-catenin 2001(01)

47.Cliffe A.Hamada F.Bienz M A role of Dishevelled in relocating Axin to the plasma membrane duringwingless signaling 2003(11)

48.Tolwinski N S.Wehrli M.Rives A.Erdeniz N DiNardo S Wieschaus E Wg/Wnt signal can be transmittedthrough arrow/LRP5,6 and Axin independently of Zw3/Gsk3beta activity 2003(03)

49.Schweizer L.Varmus H Wnt/Wingless signaling through beta-catenin requires the function of bothLRP/Arrow and frizzled classes of receptors 2003

50.He X.Semenov M.Tamai K.Zeng X LDL receptor-related proteins 5 and 6 in Wnt/beta-cateninsignaling:arrows point the way 2004(08)

51.Hamada F.Tomoyasu Y.Takatsu Y.Nakamura M Nagai S Suzuki A Fujita F Shibuya H Toyoshima K Ueno NAkiyama T Negative regulation of Wingless signaling by D-axin,a Drosophila homolog of axin1999(5408)

52.Yamamoto H.Kishida S.Kishida M.Ikeda S Takada S Kikuchi A Phosphorylation of axin,a Wnt signalnegative regulator,by glycogen synthase kinase-3beta regulates its stability 1999(16)53.Tolwinski N S.Wieschaus E Rethinking Wnt signaling 2004(04)

54.Fukui A.Kishida S.Kikuchi A.Asashima M Effects of rat Axin domains on axis formation in Xenopusembryos 2000(05)

55.Itoh K.Krupnik V E.Sokol S Y Axis determination in Xenopus involves biochemical interactions ofaxin,glycogen synthase kinase 3 and beta-catenin 1998(10)

56.Kofron M.Klein P.Zhang F.Houston D W, Schaible K, Wylie C, Heasman J The role of maternal axin inpatterning the Xenopus embryo 2001(01)

57.Brannon M.Gomperts M.Sumoy L.Moon R T Kimelman D A beta-catenin/XTcf-3 complex binds to thesiamois promoter to regulate dorsal axis specification in Xenopus 1997(18)

58.Hsu W.Shakya R.Costantini F Impaired mammary gland and lymphoid development caused by inducibleexpression of Axin in transgenic mice 2001(06)

59.Satoh S.Daigo Y.Furukawa Y.Kato T Miwa N Nishiwaki T Kawasoe T Ishiguro H Fujita M Tokino TSasaki Y Imaoka S Murata M Shimano T Yamaoka Y Nakamura Y AXIN1 mutations in hepatocellularcarcinomas,and growth suppression in cancer cells by virus-mediated trandfer of AXIN1 2000(03)60.Lyu J.Costantini F.Jho E H.Joo C K Ectopic expression of Axin blocks neuronal differentiation ofembryonic carcinoma P19 cells 2003(15)

61.Orme M H.Giannini A L.Vivanco M D.Kypta R M Glycogen synthase kinase-3 and Axin function in abeta-catenin-independent pathway that regulates neurite outgrowth in neuroblastoma cells 2003(03)62.Ishizaki Y.Ikeda S.Fujimori M.Shimizu Y Kurihara T Itamoto T Kikuchi A Okajima M Asahara T Immunohistochemical analysis and mutational analyses of beta-catenin,Axin family and APC genes inhepatocellular carcinomas 2004(05)

63.Miao J.Kusafuka T.Udatsu Y.Okada A Sequence variants of the Axin gene in hepatoblastoma 2003(02).Taniguchi K.Roberts L R.Aderca I N.Dong X Qian C Murphy L M Nagorney D M Burgart L J Roche P CSmith D I Ross J A Liu W Mutational spectrum of beta-catenin,AXIN1,and AXIN2 in hepatocellularcarcinomas and hepatoblastomas 2002(31)

65.Dahmen R P.Koch A.Denkhaus D.Tonn J C Sorensen N Berthold F Behrens J Birchmeier W Wiestler O DPietsch T Deletions of AXIN1,a Component of the WNT/wingless Pathway,in Sporadic Medulloblastomas2001(19)

66.Jin L H.ShaoQJ.LuoW.YeZY LiQ LinSC Detection ofpoint mutations of the Axinl gene in colorectalcancers 2003(05)

67.Dan T.Kashima K.Kaku N.Suzuki M Yokoyama S Mutations in components of the Wnt signaling pathwayin adenoid cystic carcinoma 2004(12)

1.外文期刊 Schwarz-Romond. T.Metcalfe. C.Bienz. M Dynamic recruitment of axin by Dishevelled proteinassemblies

Dishevelled (Dvl) proteins are cytoplasmic components of the Wnt signalling pathway, which controls numerous cell fate decisionsduring animal development. During Wnt signalling, Dvl binds to the intracellular domain of the frizzled transmembrane receptors, andalso to axin to block its activity, which results in the activation of beta-catenin and, consequently, in a transcriptional switch.We have previously reported that the DIX domain of mammalian Dvl2 allows it to form dynamic protein assemblies. Here, we show thatthese Dvl2 assemblies recruit axin, and also casein kinase I epsilon. Using photobleaching experiments of GFP- tagged Dvl2 and axinto study the dynamics of their interaction, we found that the recruitment of axin- GFP by Dvl2 assemblies is accompanied by a

striking acceleration of the dynamic properties of axin-GFP. We also show that the interaction between Dvl2 and axin remains highlydynamic even after Wnt- induced relocation to the plasma membrane. We discuss how the recruitment of casein kinase I epsilon by Dvl2assemblies might impact on the recruitment of axin to the plasma membrane during Wnt signalling.

2.外文期刊 Cselenyi. CS.Jernigan. KK.Tahinci. E.Thorne. CA.Lee. LA.Lee. E LRP6 transduces a

canonical Wnt signal independently of Axin degradation by inhibiting GSK3's phosphorylation of beta-catenin

Wnt/beta-catenin signaling controls various cell fates in metazoan development and is misregulated in several cancers anddevelopmental disorders. Binding of a Wnt ligand to,its transmembrane coreceptors inhibits phosphorylation and degradation of thetranscriptional coactivator beta-catenin, which then translocates to the nucleus to regulate target gene expression. To understandhow Writ signaling prevents beta-catenin degradation, we focused on the Writ coreceptor low-density lipoprotein receptor-related

protein 6 (LRP6), which is required for signal transduction and is sufficient to activate Writ signaling when overexpressed. LRP6 hasbeen proposed to stabilize beta-catenin by stimulating degradation of Axin, a scaffold protein required for p-catenin degradation. Incertain systems, however, Wnt-mediated Axin turnover is not detected until after p-catenin has been stabilized. Thus, LRP6 may alsosignal through a mechanism distinct from Axin degradation. To establish a biochemically tractable system to test this hypothesis, weexpressed and purified the LRP6 intracellular domain from bacteria and show that it promotes beta-catenin stabilization and Axindegradation in Xenopus egg extract. Using an Axin mutant that does not degrade in response to LRP6, we demonstrate that LRP6 can

stabilize P-catenin in the absence of Axin turnover. Through experiments in egg extract and reconstitution with purified proteins, weidentify a mechanism whereby LRP6 stabilizes beta-catenin independently of Axin degradation by directly inhibiting GSK3'sphosphorylation of beta-catenin.

3.外文期刊 Oosterveen. T.Couldreuse. DYM.Yang. PT.Fraser. E.Bergsma. J.Dale. TC.Korswagen. HC Twofunctionally distinct Axin-like proteins regulate canonical Wnt signaling in C-elegans

Axin is a central component of the canonical Writ signaling pathway that interacts with the adenomatous polyposis coli proteinAPC and the kinase GSK3 beta to downregulate the effector l3-catenin. In the nematode Caenorhabditis elegans, canonical Wnt signalingis negatively regulated by the highly divergent Axin ortholog PRY-1. Mutation of pry-1 leads to constitutive activation of BAR-I/beta-catenin-dependent Writ signaling and results in a range of developmental defects. The pty-1 null phenotype is however notfully penetrant, indicating that additional factors may partially compensate for PRY-I function. Here, we report the cloning andfunctional analysis of a second Axin-like protein, which we named AXL-1. We show that despite considerable sequence divergence withPRY-1 and other Axin family members, AXL-1 is a functional Axin ortholog. AXL-1 functions redundantly with PRY-I in negativelyregulating BAR-1/beta-catenin signaling in the developing vulva and the Q neuroblast lineage. In addition, AXL-1 functions

independently of PRY-I in negatively regulating canonical Writ signaling during excretory cell development. In contrast to vertebrateAxin and the related protein Conductin, AXL-1 and PRY-1 are not functionally equivalent. We conclude that Axin function in C. elegansis divided over two different Axin orthologs that have specific functions in negatively regulating canonical Writ signaling. (c) 2007Elsevier Inc. All rights reserved.

4.外文期刊 Chia. IV.Costantini. F Mouse axin and Axin2/conductin proteins are functionallyequivalent in vivo

Axin is a central component of the canonical Wnt signal transduction machinery, serving as a scaffold for the beta-catenin

destruction complex. The related protein Axin2/Conductin, although less extensively studied, is thought to perform similar functions.Loss of Axin causes early embryonic lethality, while Axin2-null mice are viable but have craniofacial defects. Mutations in eithergene contribute to cancer in humans. The lack of redundancy between Axin and Axin2 could be due to their different modes of

expression: while Axin is expressed ubiquitously, Axin2 is expressed in tissue- and developmental-stage-specific patterns, and itstranscription is induced by canonical Wnt signaling. Alternatively, the two proteins might have partially different functions, ahypothesis supported by the observation that they differ in their subcellular localizations in colon epithelial cells. To test thefunctional equivalence of Axin and Axin2 in vivo, we generated knockin mice in which the Axin gene was replaced with Myc-tagged Axinor Axin2 cDNA. Mice homozygous for the resulting alleles, Axin(Ax) or Axin(Ax2), express no endogenous Axin but express either Myc-Axin or Myc-Axin2 under the control of the Axin locus. Both Axin(Ax/Ax) and Axin(Ax2/Ax2) homozygotes are apparently normal andfertile, demonstrating that the Axin and Axin2 proteins are functionally equivalent.

5.OA论文 Willert. Karl.Shibamoto. Sayumi.Nusse. Roel Wnt-induced dephosphorylation of Axin releasesβ-catenin from the Axin complex

The stabilization of β-catenin is a key regulatory step during cell fate changes and transformations to tumor cells. Severalinteracting proteins, including Axin, APC, and the protein kinase GSK-3β are implicated in regulating β-catenin phosphorylation andits subsequent degradation. Wnt signaling stabilizes β-catenin, but it was not clear whether and how Wnt signaling regulates the β-catenin complex. Here we show that Axin is dephosphorylated in response to Wnt signaling. The dephosphorylated Axin binds β-cateninless efficiently than the phosphorylated form. Thus, Wnt signaling lowers Axin’s affinity for β-catenin, thereby disengaging β-catenin from the degradation machinery.

6.外文期刊 Julius MA..Hsu W..Fitzpatrick E..Jho E..Fagotto F. Costantini F..Kitajewski J..SchelbertB. Domains of Axin and disheveled required for interaction and function in Wnt signaling

Disheveled blocks the degradation of beta-catenin in response to Wnt signal by interacting with the scaffolding protein, Axin. To

define this interaction in detail we undertook a mutational and binding analysis of the murine Axin and Disheveled proteins. The DIXdomain of Axin was found to be important for association with Disheveled and two other regions of Axin (between residues 1-168 and600-810) mere identified that can promote the association of Axin and Disheveled. We found that the DM domain of Disheveled iscritical for association with Axin in vivo and for Disheveled activity. The Disheveled DIX domain controlled the ability of

Disheveled to induce the accumulation of cytosolic beta-catenin whereas the PDZ domain was not essential to this function. (C) 2000Academic Press. [References: 30]

7.外文期刊 Primot A..Gompel M..Borgne A..Liabeuf S..Romette JL..Jho EH..Costantini F..Meijer L..Baratte B. Purification of GSK-3 by affinity chromatography on immobilized axin

Glycogen synthase kinase 3 (GSK-3), an element of the Wnt signalling pathway, plays a key role in numerous cellular processesincluding cell proliferation, embryonic development, and neuronal functions. It is directly involved in diseases such as cancer (bycontrolling apoptosis and the levels of beta -catenin and cyclin D1), Alzheimer's disease (tau hyperphosphorylation), and diabeteslas a downstream element of insulin action, GSK-3 regulates glycogen and lipid synthesis). We describe here a rapid and efficientmethod for the purification of GSK-3 by affinity chromatography on an immobilized fragment of axin. Axin is a docking protein whichinteracts with GSK-3 beta, beta -catenin, phosphatase 2A, and APC. A polyhistidine-tagged;ed axin peptide (residues 419 - 672) wasproduced in Escherichia coli and either immobilized on Ni-NTA agarose beads or purified and immobilized on CNBr-activated Sepharose4B. These \"Axin-His6\" matrices were found to selectively bind recombinant rat GSK-3 beta and native GSK-3 from yeast, sea urchinembryos, and porcine brain. The affinity-purified enzymes displayed high kinase activity. This single step purification methodprovides a convenient tool to follow the status of GSK-3 (protein level, phosphorylation state, kinase activity) under various

physiological settings. It also provides a simple and efficient way to purify large amounts of active recombinant or native GSK-3 forscreening purposes. (C) 2000 Academic Press. [References: 50]

8.外文期刊 Schwarz-Romond. T.Merrifield. C.Nichols. BJ.Bienz. M The Wnt signalling effectorDishevelled form dynamic protein assemblies rather than stabile associations with cytoplasmicvesicles

Dishevelled is a crucial effector upstream in the Wnt signalling pathway, but the molecular mechanism by which it transduces theWnt signal remains elusive. Dishevelled is a cytoplasmic protein with a strong tendency to form puncta, which correlates with itspotent activity in stimulating Wnt signal transduction when overexpressed. These puncta are thought to reflect cytoplasmic vesicles.However, we show here that the mammalian Dishevelled protein Dvl2 does not colocalise with known vesicle markers for clathrin-mediated or clathrin-independent endocytic pathways. Furthermore, Dvl2 puncta do not stain with lipid dyes, indicating that thesepuncta do not contain membranes. Instead, our evidence from live imaging by TIRF microscopy of Dvl2 tagged with green fluorescentprotein (GFP-Dvl2) revealed that these puncta move in and out of the evanescent field near the plasma membrane in an undirectedfashion, and that they can grow by collision and fusion. Furthermore, high-resolution confocal microscopy and photobleaching

experiments indicate that the GFP-Dvl2 puncta are protein assemblies; there is a constant exchange of GIFP-Dvl2 between puncta and adiffuse cytoplasmic pool, which, therefore, are in a dynamic equilibrium with each other. The same is true for the DIX domain of Dvl2itself and also for Axin-GFP, which equilibrates between the punctate and cytosolic pools. Our evidence indicates that Dvl2 and Axinpuncta are dynamic protein assemblies rather than cytoplasmic vesicles.

9.学位论文 徐洪涛 Axinβ-catenin的表达与肺癌的关系 2006

β-连环素(β-catenin)既是Wnt信号传导通路中的关键分子,又是E-cadherin/catenin复合体中的重要成员。当β-catenin在细胞核内蓄积时,能激活Wnt信号传导通路,启动靶基因转录,导致细胞增殖、侵袭和转移。Axin(Axisinhibitionprotein)是Wnt信号传导通路的重要负性调节因子,介导β-catenin磷酸化,促进其降解。人类肿瘤中,这些重要分子的相关作用如何尚不清楚,分析其表达、探索其机制对于防治人类肺癌意义重大。本研究探讨Axin和β-catenin在肺癌中的表达和β-catenin突变情况,分析它们与各临床病理因素的关系,揭示Axinβ-catenin和诱导肺癌细胞凋亡的机制。 方法:

(1)本研究采用44例新鲜肺癌及癌旁正常肺组织标本,均来自中国医科大学附属第一临床学院2003~2004年行外科切除手术的肺癌患者,患者术前均未接受过放化疗。

提取组织蛋白,采用考马斯亮蓝法进行蛋白定量。取等量蛋白,进行SDS-聚丙烯酰胺凝胶电泳和转印,一抗(anti-Axin1∶50稀释,Anti-β-actin1∶500稀释)和辣根过氧化物酶标记二抗(1∶50稀释)孵育后DAB显色。以β-actin为内对照,计算Axin的相对表达量。

使用Trizol试剂提取组织总RNA后,逆转录获得cDNA,均按说明书操作。PCR扩增Axin,产物长度为452bp,产物使用1.5%琼脂糖凝胶电泳检测观察。以β-actin为内对照,计算Axin的相对表达量。

(2)100例肺鳞癌、腺癌及对应的癌旁正常肺组织标本来自中国医科大学附属第一临床学院2001~2003年外科手术切除之原发性肺癌及癌周正常肺组织,患者术前均未接受过放化疗。

标本用中性溶液固定,石蜡包埋,制成4μm切片,经脱蜡,脱苯,水化后,采用链菌素抗生物素蛋白-过氧化物酶免疫组化法(S-P法)检测β-catenin蛋白和Axin蛋白表达,以PBS代替一抗作为阴性对照,以正常肺组织为阳性对照。结果判定:β-catenin正常阳性表达定位于细胞膜,每张切片随机选取10个高倍视野,每个视野计数100个瘤细胞,计数阳性细胞百分比。无着色为阴性(-),膜阳性瘤细胞数>90%为表达正常,≤90%为表达降低。10%以上瘤细胞核和(或)浆染色为核或浆表达。表达降低和胞浆、胞核表达统归为异常表达。Axin正常阳性表达定位于细胞浆,无着色和阳性瘤细胞数<40%为阴性表达(-),阳性瘤细胞数≥40%为阳性表达(+)。

采用酚-氯仿-异戊醇法提取肺癌标本DNA。PCR扩增β-catenin基因第三外显子,产物长度为199bp,经8%SDS聚丙烯酰胺凝胶电泳,银染后与DNA标准进行比较,鉴定扩增产物。PCR产物由上海联合基因公司纯化和测序。

(3)使用含10%小牛血清的RPMI10培养液,在37℃,含5%CO2的培养箱内培养肺癌PG细胞系。在35mm培养皿上接种2×105PG细胞,培养24h,待细胞数达到90%-95%后,转染Axin基因,按说明书操作,以未转染和转染空载体的PG细胞为对照。

免疫荧光:分别于转染后48h和72h取出转染组及对照组细胞爬片,丙酮固定10min。TritonX-100处理,血清封闭后,分别滴加FLAG、Axin、β-catenin和TCF-4一抗,4℃孵育过夜。避光加罗丹明(TRITC)和FITC标记二抗,DAPI复染细胞核后,荧光显微镜观察。

RT-PCR:收集转染组及对照组细胞,提取总RNA并反转录成cDNA,分别扩增Axin、β-catenin和TCF-4,以β-actin为内参。扩增产物经1.5%琼脂糖凝胶电泳后,成像分析。

流式细胞术:收集转染组及对照组细胞,95%乙醇固定,将细胞密度调至1×106/ml,PI染色后,流式细胞仪检测细胞周期和细胞凋亡情况,用ModfitLTV3.0软件分析结果。

(4)使用SPSS13.0统计软件进行数据处理,以P<0.05为有统计学意义。 结果:

(1)44例新鲜肺癌组织中Axin蛋白的表达量明显低于正常肺组织(t=-2.819;P=0.007)。AxinmRNA的表达量也明显低于癌旁正常肺组织(t=-2.513;P=0.016)。Axin的蛋白表达与mRNA表达相关(相关系数:0.301;P=0.047),但与肺癌的临床病理特征之间未发现明显相关性。(2)肺癌中β-catenin的异常表达率为80.0%,其中核表达阳性率为26.0%。高、中分化和低分化肺癌中,β-catenin的异常表达率分别为70.0%(35/50)和

90.0%(45/50),差异有显著性(P=0.012)。有淋巴结转移和无淋巴结转移肺癌中β-catenin异常表达率分别为87.3%(48/55)和1.1%(32/45),有明显差异(P=0.044)。Axin的阳性表达率为48.0%,高、中分化和低分化肺癌中,Axin的阳性率分别为60.0%(30/50)和36.0%(18/50),差异有显著性

(P=0.016)。Ⅰ、Ⅱ、Ⅲ期肺癌中,Axin的阳性率分别为46.3%(19/41)、76.5%(13/17)和38.1%(16/42),Ⅰ期和Ⅱ期(P=0.036)、Ⅱ期和Ⅲ期(P=0.008)均有显著性差异。在β-catenin核表达阳性的病例中,Axin阳性表达率为15.4%(4/26),显著低于β-catenin核表达阴性的病例59.5%(44/74)(P<0.001)。100例肺癌标本中未发现β-catenin基因第三外显子突变。

(3)将Axin基因导入肺癌PG细胞系后,Axin的mRNA和蛋白表达均明显增加,蛋白表达定位于细胞浆和细胞核,β-catenin蛋白的表达明显减少,但mRNA表达无明显变化,同时TCF-4的蛋白和mRNA表达均明显下降。流式细胞术检测发现,转染Axin基因后,PG细胞的凋亡率明显增加,但细胞周期变化不明显。 结论:

(1)肺癌组织中Axin的表达量明显低于正常肺组织。Axin的表达与肺鳞癌、腺癌的分期、低分化和β-catenin的细胞核蓄积负相关。Axin的表达增加能促进β-catenin蛋白的降解,抑制TCF-4的表达并诱导肺癌细胞的凋亡。Axin的表达缺失可能是肺癌恶性增殖的重要原因之一。

(2)β-catenin的异常表达与肺鳞癌、腺癌的低分化和淋巴结转移相关,其基因第三外显子突变不是肺癌中β-catenin异常蓄积的主要原因。

10.外文期刊 Wen Luo.Sheng-Cai Lin Axin: A Master Scaffold for Multiple Signaling Pathways

Axin was originally identified from the characterization of the Fused locus, the disruption of which leads to duplication of axisand embryonic lethality. It is a multidomain protein that interacts with multiple proteins and functions as a negative regulator ofWnt signaling by down-regulating the |3-catenin levels. Recently, it was demonstrated that Axin also plays an important role in a JNKsignaling pathway. Axin utilizes discriminatory domains for its distinct roles in the Wnt pathway and in the Axin/ JNK pathway. Herewe review the data that show how Axin regulates multiple signaling pathways by serving as a scaffold protein, controlling diversecellular functions in proliferation, fate determination, and suppression of tumorigenesis.

本文链接:http://d.g.wanfangdata.com.cn/Periodical_zgswhxyfzswxb200604005.aspx授权使用:哈尔滨医科大学(hebykdx),授权号:6be2e145-bbcd-4b70-b688-9e10009d624f

下载时间:2010年10月15日

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo9.cn 版权所有 赣ICP备2023008801号-1

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务