2009年定西市中考数学试卷
友情提示:
b4acb2,1.抛物线yaxbxc的顶点坐标是. 2a4a22.弧长公式:l弧长nπR;其中,n为弧所对圆心角的度数,R为圆的半径. 180本试卷满分为150分,考试时间为120分钟.
一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内. 1.4的相反数是( ) A.4
B.4
C.
1 4D.1 42.图1所示的物体的左视图(从左面看得到的视图)是( ) 图1 A. B. C. D. 3.计算:A.
abab( ) aba
B.ab bab b C.ab a D.ab a4.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有( ) A.4个 B.6个 C.34个 D.36个 5.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A.等腰梯形 B.平行四边形 C.正三角形 D.矩形
6.有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的( ) A.平均数 B.中位数 C.众数 D.方差
7.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A.8米
B.83米
C.
83米 3D.
43米 38.如图2,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为( ) A.5 B.4 C.3 D.2
9.如图3,小东用长为3.2m的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m、与旗杆相距22m,则旗杆的高为( ) A.12m B.10m C.8m D.7m
中小学教育资源站 http://www.edudown.net
中小学教育资源站(http://www.edudown.net),百万资源免费下载,无须注册!
图2 图3 图4
10.如图4,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=( ) A.2
B.3
C.22
D.23 二、填空题:本大题共8小题,每小题4分,共32分.把答案写在题中的横线上. 11.当x3、y1时,代数式(xy)(xy)y2的值是 . 12.方程组x2y5,的解是 .
x2y1113.如图5,Rt△ACB中,∠ACB=90°,DE∥AB,若∠BCE=30°,则∠A= . 14.反比例函数的图象经过点P(2,1),则这个函数的图象位于第 象限. x10,15.不等式组的解集是 . x316.如图6,四边形ABCD是平行四边形,使它为矩形的条件可以是 . 图6 图7 图8 17.如图7,在△ABC中,ABAC5cm,cosB么线段AO= cm. 18.抛物线yx2bxc的部分图象如图8所示,请写出与其关系式、图象相关的2个正确结论: , .(对称轴方程,图象与x正半轴、y轴交点坐标例外)
三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤. 19.(6分)若a
3.如果⊙O的半径为10cm,且经过点B、C,那520072008,b,试不用将分数化小数的方法比较a、b的大小. ..20082009中小学教育资源站 http://www.edudown.net
中小学教育资源站(http://www.edudown.net),百万资源免费下载,无须注册!
2220.(6分)在实数范围内定义运算“”,其法则为:abab,求方程(43)x24的解.
21.(8分)如图9,随机闭合开关S1、S2、S3中的两个,求能让灯泡发光的概率.
图9
22.(8分)图10(1)是一扇半开着的办公室门的照片,门框镶嵌在墙体中间,门是向室内开的.图10(2)画的是它的一个横断面.虚线表示门完全关好和开到最大限度(由于受到墙角的阻碍,再也开不动了)时的两种情形,这时二者的夹角为120°,从室内看门框露在外面部分的宽为4cm,求室内露出的墙的厚度a的值.(假设该门无论开到什么角度,门和门框之间基本都是无缝的.精确到0.1cm,3≈1.73)
图10(1) 图10(2)
23.(10分)鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:[注:“鞋码”是表示鞋子大小的一种号码] 鞋长(cm) 鞋码(号) 16 22 19 28 21 32 24 38 (1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上? (2)求x、y之间的函数关系式; (3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?
四、解答题(二):本大题共5小题,共50分(不含附加4分).解答时,应写出必要的文字说明、证明过程或演算步骤.
中小学教育资源站 http://www.edudown.net
中小学教育资源站(http://www.edudown.net),百万资源免费下载,无须注册!
24.(8分)为响应国家要求中小学生每天锻炼1小时的号召,某校开展了形式多样的体育运动活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图11(1)和图11(2). (1)请在图11(1)中将表示“乒乓球”项目的图形补充完整; (2)求扇形统计图11(2)中表示“足球”项目扇形圆心角的度数.
图11(1) 图11(2)
25.(10分)去年5月12日,四川省汶川县发生了里氏8.0级大地震,兰州某中学师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?人均捐款多少元? 26.(10分)图12中的粗线CD表示某条公路的一段,其中AmB是一段圆弧,AC、BD是线段,且AC、BD分别与圆弧AmB相切于点A、B,线段AB=180m,∠ABD=150°. (1)画出圆弧AmB的圆心O;
(2)求A到B这段弧形公路的长.
图12
27.(10分)如图13,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:
(1)△ACE≌△BCD;(2)ADDBDE.
中小学教育资源站 http://www.edudown.net
222图13
中小学教育资源站(http://www.edudown.net),百万资源免费下载,无须注册!
28.[12分+附加4分]如图14(1),抛物线yx22xk与x轴交于A、B两点,与y轴交于点C(0,
3).[图14(2)、图14(3)为解答备用图]
(1)k ,点A的坐标为 ,点B的坐标为 ;
(2)设抛物线yx22xk的顶点为M,求四边形ABMC的面积;
(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;
(4)在抛物线yx22xk上求点Q,使△BCQ是以BC为直角边的直角三角形.
图14(1) 图14(2) 图14(3)
附加题:如果你的全卷得分不足150分,则本题与28题附加的4分的得分将记入总分,但记入总分后全卷得分不得超过150分,超过按150分算. 29.(7分)本试卷第19题为:若a20072008,b,试不用将分数化小数的方法比较a、b的大小. ..20082009观察本题中数a、b的特征,以及你比较大小的过程,直接写出你发现的一个一般结论.
武威、金昌、定西、白银、酒泉、嘉峪关 武威市2009年初中毕业、高中招生考试
数学试卷参与评分标准
一、选择题:本大题共10小题,每小题3分,共30分. 1 2 3 4 5 6 题号 中小学教育资源站 http://www.edudown.net
7 8 9 10 中小学教育资源站(http://www.edudown.net),百万资源免费下载,无须注册!
B D A B D B 答案 二、填空题:本大题共8小题,每小题4分,共32分. 11.9 12. C A A C 15.x1 16.答案不唯一,如AC=BD,∠BAD=90o,等 17. 5 18.答案不唯一.如:①c=3;②b+c=1;③c-3b=9;④b=-2;⑤抛物线的顶点为(-1,4),或二次函数的最
2
大值为4;⑥方程-x+bx+c=0的两个根为-3,1;⑦y>0时,-3 x3, 13.60o 14.二、四 y420072009(20081)(20081)2008212解:∵ a=, ··································· 3分 20082009200820092008200920082 b, ···································································································· 4分 20082009200821220082, ······························································································· 5分 ∴ a22解:∵ abab , ∴ (43)x(4232)x7x72x2. ·············· 3分 ∴ 72x224. ∴ x225. ·················································································· 4分 ∴ x5. ···················································································································· 6分 21. 本小题满分8分 解:∵ 随机闭合开关S1、S2、S3中的两个,共有3种情况:S1S2,S1S3,S2S3. 能让灯泡发光的有S1S3、 ············································································································· 4分 S2S3两种情况. · 2∴ 能让灯泡发光的概率为. ······················································································ 8分 322. 本小题满分8分 解:从图中可以看出,在室内厚为acm的墙面、宽 为4cm的门框及开成120°的门之间构成了一 个直角三角形,且其中有一个角为60°. ·········· 3分 从而 a=4×tan60° ················································· 6分 =4×3≈6.9(cm). ····································· 8分 即室内露出的墙的厚度约为6.9cm. 23. 本小题满分10分 解:(1)一次函数. ··············································································································· 2分 (2)设ykxb. ········································································································ 3分 2216kb, ····························································································· 5分 2819kb.k2,解得 ·············································································································· 7分 b10.∴y2x10.(x是一些不连续的值.一般情况下,x取16、16.5、17、17.5、„、26、26.5、27等) 由题意,得 ······································································································································ 8分 说明:只要求对k、b的值,不写最后一步不扣分. (3)y44时,x27. 答:此人的鞋长为27cm. ···························································································· 10分 说明:只要求对x=27cm,不答不扣分. 中小学教育资源站 http://www.edudown.net 中小学教育资源站(http://www.edudown.net),百万资源免费下载,无须注册! 四、解答题(二):本大题共5小题,共50分 (不含附加4分) . 24. 本小题满分8分 解:(1)如图: ························· 4分 (2)∵ 参加足球运动项目的学生占所有运动项目学生的比例为 101, ··············· 6分 505∴ 扇形统计图中表示“足球”项目扇形圆心角的度数为36072. ···················· 8分 25. 本小题满分10分 解法1:设第一天捐款x人,则第二天捐款(x+50)人, ··················································· 1分 由题意列方程 1548006000= . ··············································································· 5分 x50x 解得 x =200. ·················································································································· 7分 检验:当x =200时,x(x+50)≠0, ∴ x =200是原方程的解. ······························································································· 8分 两天捐款人数x+(x+50)=450, 人均捐款4800=24(元). x答:两天共参加捐款的有450人,人均捐款24元. ·················································· 10分 说明:只要求对两天捐款人数为450, 人均捐款为24元,不答不扣分. 解法2:设人均捐款x元,····································································································· 1分 60004800由题意列方程 -=50 . ········································································ 5分 xx解得 x =24. ····················································································································7分 以下略. 26. 本小题满分10分 解:(1)如图,过A作AO⊥AC,过B作BO⊥BD,AO与BO相 交于O,O即圆心. ································································ 3分 说明:若不写作法,必须保留作图痕迹.其它作法略. (2)∵ AO、BO都是圆弧AmB的半径,O是其圆心, ∴ ∠OBA=∠OAB=150°-90°=60°. ·········································· 5分 ∴ △AOB为等边三角形.∴ AO=BO=AB=180. ····················· 7分 O π60180AB60π (m). ∴ 180∴ A到B这段弧形公路的长为60πm.·········································································· 10分 27. 本小题满分10分 证明:(1) ∵ ACBECD, A ∴ ACDBCDACDACE. 即 BCDACE. ·················································· 2分 D ∵ BCAC,DCEC, ∴ △ACE≌△BCD. ························································· 4分 E (2)∵ ACB是等腰直角三角形, B ∴ BBAC45. ················································ 5分 C ∵ △ACE≌△BCD, ∴ BCAE45. ············· 6分 中小学教育资源站 http://www.edudown.net 中小学教育资源站(http://www.edudown.net),百万资源免费下载,无须注册! ∴ DAECAEBAC454590.················································· 7分 ∴ ADAEDE. ·························································································· 9分 由(1)知AE=DB, ∴ AD+DB=DE. ························································································ 10分 28.本小题满分16分(含附加4分) 解:(1)k3, ········································································ 1分 A(-1,0), ·································································· 2分 B(3,0). ···································································· 3分 (2)如图14(1),抛物线的顶点为M(1,-4),连结OM. ············································································ 4分 则 △AOC的面积= 22222233,△MOC的面积=, 22 图14(1) △MOB的面积=6, ························································· 5分 ∴ 四边形 ABMC的面积 =△AOC的面积+△MOC的面积+△MOB的面积=9. ············································· 6分 说明:也可过点M作抛物线的对称轴,将四边形ABMC的面 积转化为求1个梯形与2个直角三角形面积的和. (3)如图14(2),设D(m,m2m3),连结OD. 则 0<m<3,m2m3 <0. 且 △AOC的面积= 2233,△DOC的面积=m, 22 图14(2) 32△DOB的面积=-(m2m3), ·································································· 8分 2=∴ 四边形 ABDC的面积=△AOC的面积+△DOC的面积+△DOB的面积 329mm6 2233275=(m). ··························································································· 9分 22831575),使四边形ABDC的面积最大为. ·∴ 存在点D(,································ 10分 248(4)有两种情况: 图14(3) Q 图14(4) 如图14(3),过点B作BQ1⊥BC,交抛物线于点1、交y轴于点E,连接Q1C. ∵ ∠CBO=45°,∴∠EBO=45°,BO=OE=3. ∴ 点E的坐标为(0,3). ∴ 直线BE的解析式为yx3. ··········································································· 12分 ììx1=-2,ïx2=3,yx3,ï ïï由 解得í í2ïyx2x3ïïîy1=5;ïîy2=0.∴ 点Q1的坐标为(-2,5). ······················································································· 13分 中小学教育资源站 http://www.edudown.net 中小学教育资源站(http://www.edudown.net),百万资源免费下载,无须注册! 如图14(4),过点C作CF⊥CB,交抛物线于点Q2、交x轴于点F,连接BQ2. ∵ ∠CBO=45°,∴∠CFB=45°,OF=OC=3. ∴ 点F的坐标为(-3,0). ∴ 直线CF的解析式为yx3.··········································································· 14分 ìx1=0,ìx2=1, yx3,ïïïï由 解得í í2ïïy=-3;yx2x3ïïî1îy2=-4.∴点Q2的坐标为(1,-4). ························································································· 15分 综上,在抛物线上存在点Q1(-2,5)、Q2(1,-4),使△BCQ1、△BCQ2是以BC为直角边的直角三角形. ···························································································································· 16分 说明:如图14(4),点Q2即抛物线顶点M,直接证明△BCM为直角三角形同样得2分. 附加题:如果你的全卷得分不足150分,则本题与28题附加的4分的得分将记入总分,但记入总分后全卷得分不得超过150分,超过按150分算. 29. 本小题满分7分 解:学生可能写出不同程度的一般的结论,由一般化程度不同得不同分. nn1. ······················································ 4分 mm1nn1若m、n是任意正实数,且m>n,则. ······················································ 5分 mm1若m、n是任意正整数,且m>n,则 若m、n、r是任意正整数,且m>n;或m、n是任意正整数,r是任意正实数,且m>n,则 6分 nnr.mmrnnr. mmr若m、n是任意正实数,r是任意正整数,且m>n;或m、n、r是任意正实数,且m>n,则 7分 中小学教育资源站 http://www.edudown.net
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo9.cn 版权所有 赣ICP备2023008801号-1
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务