10,知方程gx0在R上没有实数解,所以k的最大值ex180210824.36027018091B[,1],故选D.
2第 7 页,共 15 页
精选高中模拟试卷
【解析】解:设g(x)=xex,y=mx﹣m, 由题设原不等式有唯一整数解, 即g(x)=xex在直线y=mx﹣m下方, g′(x)=(x+1)ex,
g(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,
故g(x)min=g(﹣1)=﹣,y=mx﹣m恒过定点P(1,0), 结合函数图象得KPA≤m<KPB, 即
≤m<
,
,
故选:C.
【点评】本题考查了求函数的最值问题,考查数形结合思想,是一道中档题.
7. 【答案】B
2
【解析】解:因为复数a﹣1+(a﹣1)i(i为虚数单位)是纯虚数,
2
所以a﹣1=0且a﹣1≠0,解得a=﹣1.
故选B.
【点评】本题考查复数的基本概念的应用,实部为0并且虚部不为0,是解题的关键.
8. 【答案】A
【解析】解:设x<0时,则﹣x>0,
323232
因为当x>0时,f(x)=x﹣2x所以f(﹣x)=(﹣x)﹣2(﹣x)=﹣x﹣2x,
又因为f(x)是定义在R上的奇函数,所以f(﹣x)=﹣f(x),
32
所以当x<0时,函数f(x)的表达式为f(x)=x+2x,故选A.
9. 【答案】D
【解析】∵f(x4)f(x),∴f(x8)f(x4),∴f(x8)f(x),
第 8 页,共 15 页
精选高中模拟试卷
∴f(x)的周期为8,∴f(25)f(1),f(80)f(0),
f(11)f(3)f(14)f(1)f(1),
又∵奇函数f(x)在区间[0,2]上是增函数,∴f(x)在区间[2,2]上是增函数, ∴f(25)f(80)f(11),故选D. 10.【答案】C
【解析】解:与﹣463°终边相同的角可以表示为:k360°﹣463°,(k∈Z) 即:k360°+257°,(k∈Z) 故选C
【点评】本题考查终边相同的角,是基础题.
11.【答案】
【解析】选B.取AP的中点M, 则PA=2AM=2OAsin∠AOM
x
=2sin ,
2x
PB=2OM=2OA·cos∠AOM=2cos,
2
xxxπ
∴y=f(x)=PA+PB=2sin+2cos=22sin(+),x∈[0,π],根据解析式可知,只有B选项符合要求,
2224故选B. 12.【答案】A
【解析】解:设等差数列{an}的公差为d, 由a1+1,a3+2,a5+3构成等比数列,
2
得:(a3+2)=(a1+1)(a5+3), 2
整理得:a3+4a3+4=a1a5+3a1+a5+3
2
即(a1+2d)+4(a1+2d)+4=a1(a1+4d)+4a1+4d+3. 2
化简得:(2d+1)=0,即d=﹣.
∴q===1.
故选:A.
【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.
二、填空题
13.【答案】 9 .
第 9 页,共 15 页
精选高中模拟试卷
【解析】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22, 所以总城市数为11÷0.22=50,
平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18, 所以平均气温不低于25.5℃的城市个数为50×0.18=9. 故答案为:9
14.【答案】 3,﹣17 .
2
【解析】解:由f′(x)=3x﹣3=0,得x=±1, 当x<﹣1时,f′(x)>0, 当﹣1<x<1时,f′(x)<0, 当x>1时,f′(x)>0,
故f(x)的极小值、极大值分别为f(﹣1)=3,f(1)=﹣1, 而f(﹣3)=﹣17,f(0)=1,
3
故函数f(x)=x﹣3x+1在[﹣3,0]上的最大值、最小值分别是3、﹣17.
15.【答案】 (﹣2,﹣6) .
【解析】解:向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,
则向量=﹣[4+4﹣2+2(﹣)]=﹣(6+4﹣4)=﹣[6(1,﹣3)+4(﹣2,4)﹣4(﹣1,﹣2)]=﹣(2,6)=(﹣2,﹣6), 故答案为:(﹣2,﹣6).
【点评】本题考查了向量的多边形法则、向量坐标运算、线性运算,考查了计算能力,属于基础题.
16.【答案】-3e 【解析】f′(x)=减,
当x>-m时,f′(x)>0,f(x)单调递增.若-m≤1,即m≥-1时,f(x)min=f(1)=-m≤1,不可能等于4;
若1<-m≤e,即-e≤m<-1时,f(x)min=f(-m)=ln(-m)+1,令ln(-m)+1=4,得m=-e3(-e,-
1mxm+2=,令f′(x)=0,则x=-m,且当x<-m时,f′(x)<0,f(x)单调递xxx2
第 10 页,共 15 页
精选高中模拟试卷
1);若-m>e,即m<-e时,f(x)min=f(e)=1-m =-3e.
mm,令1-=4,得m=-3e,符合题意.综上所述,ee17.【答案】 (1,2) .
【解析】解:∵f(x)=logax(其中a为常数且a>0,a≠1)满足f(2)>f(3), ∴0<a<1,x>0,
若f(2x﹣1)<f(2﹣x), 则
解得:1<x<2, 故答案为:(1,2).
【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题.
18.【答案】 [1,5)∪(5,+∞) .
【解析】解:整理直线方程得y﹣1=kx,
∴直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可, 由于该点在y轴上,而该椭圆关于原点对称, 故只需要令x=0有
5y2=5m
2
得到y=m
,
要让点(0.1)在椭圆内或者椭圆上,则y≥1即是 y2≥1
得到m≥1
∵椭圆方程中,m≠5
m的范围是[1,5)∪(5,+∞) 故答案为[1,5)∪(5,+∞)
【点评】本题主要考查了直线与圆锥曲线的综合问题.本题采用了数形结合的方法,解决问题较为直观.
三、解答题
19.【答案】
【解析】:Ⅰf'(x)exa,因为定义域为(0,), x第 11 页,共 15 页
精选高中模拟试卷
ax有解 即xea有解. 令h(x)xex,h'(x)ex(x1), x当x0,h'(x)0,h(0)0h(x)0 f'(x)0ex所以,当a0时,f'(x)0,无零点; 当a0时,有唯一零点. Ⅱ由Ⅰ可知,当a0时,设f'(x)在(0,)上唯一零点为x0, 当x(x0,),f'(x)0,f(x)在(x0,)为增函数;
aex0x0a x0aaaaf(x0)ex0alnx0alnx0a(lnax0)ax0alna2aalna
x0ex0x0当x(0,x0),f'(x)0,f(x)在(0,x0)为减函数.
ex020.【答案】
【解析】解(1)因为20至50岁的54人有9人节能意识强,大于50岁的46人有36人节能意识强,相差较大,所以节能意识强弱与年龄有关
(2)由数据可估计在节能意识强的人中,年龄大于50岁的概率约为∴年龄大于50岁的约有
(人)
(人),
与
(3)抽取节能意识强的5人中,年龄在20至50岁的
年龄大于50岁的5﹣1=4人,记这5人分别为a,B1,B2,B3,B4.
从这5人中任取2人,共有10种不同取法:(a,B1),(a,B2),(a,B3),(a,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4), 设A表示随机事件“这5人中任取2人,恰有1人年龄在20至50岁”, 则A中的基本事件有4种:(a,B1),(a,B2),(a,B3),(a,B4) 故所求概率为
21.【答案】
【解析】(1)由题意知,f(x)absinxcosx
3(sinxcosx)(sinxcosx) 213sin2xcos2xsin(2x)……………………………………3分 2235xk令2k2x2k,kZ,则可得k,kZ.
23212125,k](kZ).…………………………5分 ∴f(x)的单调递增区间为[k1212第 12 页,共 15 页
精选高中模拟试卷
22.【答案】(本小题满分13分)
解:(Ⅰ)当E为PB的中点时,CE//平面PAD. (1分) 连结EF、EC,那么EF//AB,EF∵DC//AB,DC1AB. 21AB,∴EF//DC,EFDC,∴EC//FD. (3分) 2又∵CE平面PAD, FD平面PAD,∴CE//平面PAD. (5分)
(Ⅱ)设O为AD的中点,连结OP、OB,∵PAPD,∴OPAD, 在直角三角形ABD中,OB1ADOA, 又∵PAPB,∴PAOPBO,∴POAPOB,∴2OPOB,
∴OP平面ABD. (10分)
POPA2AO2(6)2(2)22,BDAD2AB22
1112∴三棱锥PBDF的体积VPBDFVPABD22. (13分)
2233第 13 页,共 15 页
精选高中模拟试卷
PF
EDCOA
B
23.【答案】(1)证明见解析;(2)【解析】
1. 8试题解析:(1)证明:取PD中点R,连结MR,RC, ∵MR//AD,NC//AD,MRNC∴MR//NC,MRAC, ∴四边形MNCR为平行四边形,
∴MN//RC,又∵RC平面PCD,MN平面PCD, ∴MN//平面PCD.
(2)由已知条件得ACADCD1,所以SACD所以VAQCDVQACD
1AD, 23, 4111SACDPA. 328
第 14 页,共 15 页
精选高中模拟试卷
考点:1、直线与平面平行的判定;2、等积变换及棱锥的体积公式. 24.【答案】
22
【解析】解:∵直线x+ay﹣2=0与圆x+y=1有公共点 ∴
≤1⇒a2≥1,即a≥1或a≤﹣1,
命题p为真命题时,a≥1或a≤﹣1; ∵点(a,1)在椭圆∴
命题q为真命题时,﹣2<a<2,
由复合命题真值表知:若命题“p且¬q”是真命题,则命题p,¬q都是真命题 即p真q假,则
⇒a≥2或a≤﹣2. 内部,
,
故所求a的取值范围为(﹣∞,﹣2]∪[2,+∞).
第 15 页,共 15 页