SparkSQL(⼆)——基本操作
SparkSession新的起点
在⽼的版本中,SparkSQL提供两种SQL查询起始点:⼀个叫SQLContext,⽤于Spark⾃⼰提供的SQL查询;⼀个叫HiveContext,⽤于连接Hive的查询。
SparkSession是Spark最新的SQL查询起始点,实质上是SQLContext和HiveContext的组合,所以在SQLContext和HiveContext上可⽤的API在SparkSession上同样是可以使⽤的。SparkSession内部封装了sparkContext,所以计算实际上是由sparkContext或者HiveContext完成的。
DataFrame基本操作
创建在Spark SQL中SparkSession是创建DataFrame和执⾏SQL的⼊⼝,创建DataFrame有三种⽅式:通过Spark的数据源进⾏创建;从⼀个存在的RDD进⾏转换;还可以从HiveTable进⾏查询返回。1)通过spark的数据源创建
查看SparkSession⽀持哪些⽂件格式创建dataframe(在spark shell中,spark.read.+tab)csv format jdbc json load option options orc parquet schema table text textFile以json格式为例:
{\"name\":\"zhangsan\{\"name\":\"lisi\
{\"name\":\"wangwu\
scala> spark.read.json(\"file:///home/chxy/spark/user.json\")
res2: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
它可以⾃动地判断出数据的字段和字段类型
2)从⼀个存在的RDD中进⾏转换
注意:如果需要RDD与DF或者DS之间操作,那么都需要引⼊ import spark.implicits._(1)⼿动转换
//⾸先引⼊隐式转换
scala> import spark.implicits._ import spark.implicits._
//创建⼀个RDD
scala> def rdd = spark.sparkContext.makeRDD(List((\"zhangsan\rdd: org.apache.spark.rdd.RDD[(String, Int)]
//⼿动指定dataframe的数据结构
scala> val dataframe = rdd.toDF(\"name\
dataframe: org.apache.spark.sql.DataFrame = [name: string, age: int]
(2)通过case类来转换⾸先创建样例类
scala> case class People(name:String, age:Int)defined class People
将rdd中的数据转换为样例类的实例,rdd中的数据类型变为People
scala> val peopleRdd = rdd.map{ d => {People(d._1,d._2)}}
peopleRdd: org.apache.spark.rdd.RDD[People] = MapPartitionsRDD[3] at map at
将peopleRdd转换为dataframe,此时⽆需指定数据结构,spark可以直接将含有case类的RDD转换为DataFrame
scala> val peopleDataframe = peopleRdd.toDF
peopleDataframe: org.apache.spark.sql.DataFrame = [name: string, age: int]
将dataframe转换为rdd
scala> peopleDataframe.rdd
res3: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[7] at rdd at :32注意:转换后的数据类型已经不是People,⽽是Row,也就是⾏,它⽆法还原出原来的数据类型。
3)从hive查询的tab中反馈()
基本操作查看数据
scala> dataframe.show()+--------+---+| name|age|+--------+---+|zhangsan| 21|| lisi| 22|| wangwu| 23|+--------+---+
创建临时视图
scala> dataframe.createTempView(\"user\")
从临时视图查询数据
//从临时视图返回的数据会组成⼀个新的DataFramescala> spark.sql(\"select * from user\")
res8: org.apache.spark.sql.DataFrame = [name: string, age: int]scala> spark.sql(\"select * from user\").show+--------+---+| name|age|+--------+---+|zhangsan| 21|| lisi| 22|| wangwu| 23|+--------+---+
scala> spark.sql(\"select name from user\").show+--------+| name|+--------+|zhangsan|| lisi|| wangwu|+--------+
创建⼀个全局临时视图
scala> dataframe.createGlobalTempView(\"emp\")
访问该全局临时视图
scala> spark.sql(\"select * from global_temp.emp\").show+--------+---+| name|age|+--------+---+|zhangsan| 21|| lisi| 22|| wangwu| 23|+--------+---+
临时表是Session范围内的,Session退出后,表就失效了。如果想应⽤范围内有效,可以使⽤全局表。注意使⽤全局表时需要全路径访问,如:global_temp.emp在另⼀个session范围内访问该视图:
scala> spark.newSession.sql(\"select * from global_temp.emp\").show+--------+---+| name|age|+--------+---+|zhangsan| 21|| lisi| 22|| wangwu| 23|+--------+---+
注意:
1)视图⼀旦定义则不可修改的;2)session的概念:
⼴义:连接状态,⽐如⼀次通信。狭义:内存中的⼀块存储空间
DataSet
Dataset是具有强类型的数据集合,需要提供对应的类型信息。
创建创建⼀个样例类
scala> case class People(name:String, age:Int)defined class People
创建DataSet(直接从Seq中创建)
scala> val peopleDataset = Seq(People(\"zhangsan\",20),People(\"lisi\",21),People(\"wangwu\",22)).toDS()peopleDataset: org.apache.spark.sql.Dataset[People] = [name: string, age: int]
RDD转换为DataSet
SparkSQL能够⾃动将包含有case类的RDD转换成DataSet直接从peopleRdd开始演⽰:
scala> peopleRdd
res10: org.apache.spark.rdd.RDD[People] = MapPartitionsRDD[3] at map at //RDD中的People case类直接可以映射为DataSet的类型scala> peopleRdd.toDSres11: org.apache.spark.sql.Dataset[People] = [name: string, age: int]
DataSet转换成RDD
直接调⽤rdd⽅法,⽽且可以保留RDD的case类的类型
scala> res11.rdd
res12: org.apache.spark.rdd.RDD[People] = MapPartitionsRDD[9]
DataFrame与DataSet的互转
DataFrame转换成DataSet:DataFrame有结构,但是没有类型,DataSet既有结构也有类型,因此只需要加上类型
scala> peopleDataframe.as[People]
res14: org.apache.spark.sql.Dataset[People] = [name: string, age: int]
DataSet转换成DataFrame:同样的道理,只需要忽略类型
scala> peopleDataset.toDF
res15: org.apache.spark.sql.DataFrame = [name: string, age: int]
RDD DataFrame,DataSet三者之间的互转总结如下:
重要补充:
1.增删改查,四⼤sql常⽤操作,增、删、改是否被dataframel所⽀持呢?⾸先从⽂件创建⼀个dataframe,并创建临时视图:
scala> val userDF = spark.read.json(\"file:///home/chxy/spark/user.json\")
userDF: org.apache.spark.sql.DataFrame = [age: bigint, name: string] scala> userDF.createTempView(\"userView\")
执⾏插⼊操作,抛出异常:
scala> spark.sql(\"insert into userView values('sasa',24)\")
org.apache.hadoop.fs.ParentNotDirectoryException: Parent path is not a directory: file:/home/chxy/spark/user.json
org.apache.hadoop.fs.ParentNotDirectoryException.这个异常是由hdfs⽂件系统抛出的。很容易理解,因为hdfs天⽣不⽀持⽂件的插⼊操作。对于增加和删除操作,因该会得到相同的结果。
执⾏更新操作,抛出异常:
spark.sql(\"update userView set name = 'sasa' where id = 1\")org.apache.spark.sql.catalyst.parser.ParseException:
mismatched input 'update' expecting {'(', 'SELECT', 'FROM', 'ADD', 'DESC', 'WITH', 'VALUES', 'CREATE', 'TABLE', 'INSERT', 'DELETE', 'DESCRIBE', 'EXPLAIN', 'SHOW', 'USE', 'DROP', 'ALTER', 'MAP', 'SET', 'RESET', 'START', 'COMMIT
sparksql不⽀持update执⾏删除操作,抛出异常:
spark.sql(\"delete from user where age = 20\")
org.apache.spark.sql.catalyst.parser.ParseException:Operation not allowed: delete from(line 1, pos 0)== SQL ==
delete from user where age = 20^^^
at org.apache.spark.sql.catalyst.parser.ParserUtils$.operationNotAllowed(ParserUtils.scala:39)
该操作不被允许。
2.关于视图:
视图在driver端是不可见的
scala> userView
:24: error: not found: value userView userView ^如何删除⼀个视图
spark.sql(\"drop table userView\")
3.关于dataset与dataframe中的算⼦如何使⽤以map算⼦为例:
package sparksql
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
object Demo1 {
def main(args: Array[String]): Unit = { //创建SparkConf()并设置App名称 val spark = SparkSession .builder()
.appName(\"Spark SQL basic example\")
.config(\"spark.some.config.option\", \"some-value\") .master(\"local[*]\") .getOrCreate() import spark.implicits._
val raw: RDD[(String, Int)] = spark.sparkContext.makeRDD(List((\"zhangsan\", 21), (\"lisi\", 22), (\"wangwu\", 23)))//创建dataframe
val df: DataFrame = raw.toDF(\"name\", \"age\") df.show()
//调⽤map⽅法,数据数据类型是:Row(col1,col2...coln) df.map{
case Row(col1:String,col2:Int)=> println(col1);println(col2) col1 case _=> \"\" }.show()
//同RDD,会⽣成⼀个新的DataFrame
spark.stop() }}
dataset:
package sparksql
import org.apache.spark.sql.{Dataset, SparkSession}
object Demo2 {
case class People(name:String, age:Int)//声明case类 def main(args: Array[String]): Unit = { //创建SparkConf()并设置App名称 val spark = SparkSession .builder()
.appName(\"Spark SQL basic example\")
.config(\"spark.some.config.option\", \"some-value\") .master(\"local[*]\") .getOrCreate() import spark.implicits._
val peopleDataset = Seq(People(\"zhangsan\",20),People(\"lisi\",21),People(\"wangwu\",22)).toDS()//创建dataset val newDataset: Dataset[String] = peopleDataset.map { case People(name: String, age: Int) => println(name) name case _ => \"\" }
newDataset.show() spark.stop() }}
遇到的坑: