Python建模步骤
#%%
#载⼊数据 、查看相关信息import pandas as pdimport numpy as np
from sklearn.preprocessing import LabelEncoderprint('第⼀步:加载、查看数据')
file_path = r'D:\rain\\201905data\\liwang.csv'
band_data = pd.read_csv(file_path,encoding='UTF-8')band_data.info()band_data.shape
#%%#
print('第⼆步:清洗、处理数据,某些数据可以使⽤数据库处理数据代替')#数据清洗:缺失值处理:丢去、#查看缺失值
band_data.isnull().sum
band_data = band_data.dropna()
#band_data = band_data.drop(['state'],axis=1)# 去除空格
band_data['voice_mail_plan'] = band_data['voice_mail_plan'].map(lambda x: x.strip())band_data['intl_plan'] = band_data['intl_plan'].map(lambda x: x.strip())band_data['churned'] = band_data['churned'].map(lambda x: x.strip())
band_data['voice_mail_plan'] = band_data['voice_mail_plan'].map({'no':0, 'yes':1})band_data.intl_plan = band_data.intl_plan.map({'no':0, 'yes':1})for column in band_data.columns:
if band_data[column].dtype == type(object): le = LabelEncoder()
band_data[column] = le.fit_transform(band_data[column])
#band_data = band_data.drop(['phone_number'],axis=1)
#band_data['churned'] = band_data['churned'].replace([' True.',' False.'],[1,0])#band_data['intl_plan'] = band_data['intl_plan'].replace([' yes',' no'],[1,0])
#band_data['voice_mail_plan'] = band_data['voice_mail_plan'].replace([' yes',' no'],[1,0])
#%%
# 模型 [重复、调优]
print('第三步:选择、训练模型')x = band_data.drop(['churned'],axis=1)y = band_data['churned']
from sklearn import model_selection
train,test,t_train,t_test = model_selection.train_test_split(x,y,test_size=0.3,random_state=1)from sklearn import tree
model = tree.DecisionTreeClassifier(max_depth=2)model.fit(train,t_train)
fea_res = pd.DataFrame(x.columns,columns=['features'])fea_res['importance'] = model.feature_importances_t_name= band_data['churned'].value_counts()t_name.indeximport graphviz
import os
os.environ[\"PATH\"] += os.pathsep + r'D:\\software\\developmentEnvironment\\graphviz-2.38\\release\\bin'dot_data= tree.export_graphviz(model,out_file=None,feature_names=x.columns,max_depth=2, class_names=t_name.index.astype(str), filled=True, rounded=True, special_characters=False)graph = graphviz.Source(dot_data)#graph
graph.render(\"dtr\")
#%%
print('第四步:查看、分析模型')
#结果预测
res = model.predict(test)
#混淆矩阵
from sklearn.metrics import confusion_matrixconfmat = confusion_matrix(t_test,res)print(confmat)
#分类指标 https://blog.csdn.net/akadiao/article/details/787888from sklearn.metrics import classification_reportprint(classification_report(t_test,res))#%%
print('第五步:保存模型')
from sklearn.externals import joblib
joblib.dump(model,r'D:\rain\\201905data\\mymodel.model')#%%
print('第六步:加载新数据、使⽤模型')
file_path_do = r'D:\rain\\201905data\\do_liwang.csv'deal_data = pd.read_csv(file_path_do,encoding='UTF-8')#数据清洗:缺失值处理
deal_data = deal_data.dropna()
deal_data['voice_mail_plan'] = deal_data['voice_mail_plan'].map(lambda x: x.strip())deal_data['intl_plan'] = deal_data['intl_plan'].map(lambda x: x.strip())deal_data['churned'] = deal_data['churned'].map(lambda x: x.strip())
deal_data['voice_mail_plan'] = deal_data['voice_mail_plan'].map({'no':0, 'yes':1})deal_data.intl_plan = deal_data.intl_plan.map({'no':0, 'yes':1})for column in deal_data.columns:
if deal_data[column].dtype == type(object): le = LabelEncoder()
deal_data[column] = le.fit_transform(deal_data[column])#数据清洗
#加载模型
model_file_path = r'D:\rain\\201905data\\mymodel.model'deal_model = joblib.load(model_file_path)#预测
res = deal_model.predict(deal_data.drop(['churned'],axis=1))#%%
print('第七步:执⾏模型,提供数据')
result_file_path = r'D:\rain\\201905data\\result_liwang.csv'
deal_data.insert(1,'pre_result',res)
deal_data[['state','pre_result']].to_csv(result_file_path,sep=',',index=True,encoding='UTF-8')