您好,欢迎来到化拓教育网。
搜索
您的当前位置:首页和差化积和积化和差

和差化积和积化和差

来源:化拓教育网


和差化积 目录 正弦、余弦的和差化积 正切的和差化积 注意事项 正弦、余弦的和差化积 正切的和差化积 注意事项 展开 编辑本段

正弦、余弦的和差化积

公式

指高中数学三角函数部分的一组恒等式

sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]

sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]

cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]

cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】

以上四组公式可以由积化和差公式推导得到

证明过程

sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程

因为

sin(α+β)=sin αcos β+cos αsin β,

sin(α-β)=sin αcos β-cos αsin β,

将以上两式的左右两边分别相加,得

sin(α+β)+sin(α-β)=2sin αcos β,

设 α+β=θ,α-β=φ

那么

α=(θ+φ)/2, β=(θ-φ)/2

把α,β的值代入,即得

sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2]

编辑本段

正切的和差化积

tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明)

cotα±cotβ=sin(β±α)/(sinα·sinβ)

tanα+cotβ=cos(α-β)/(cosα·sinβ)

tanα-cotβ=-cos(α+β)/(cosα·sinβ)

证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ

=(sinα·cosβ±cosα·sinβ)/(cosα·cosβ)

=sin(α±β)/(cosα·cosβ)=右边

∴等式成立

编辑本段

注意事项

在应用和差化积时,必须是一次同名三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次

口诀

正加正,正在前,余加余,余并肩

正减正,余在前,余减余,负正弦

反之亦然

生动的口诀:(和差化积)

帅+帅=帅哥

帅-帅=哥帅

咕+咕=咕咕

哥-哥=负嫂嫂

反之亦然

积化和差

目录

简介

公式

证明

作用

编辑本段

简介

积化和差,指初等数学三角函数部分的一组恒等式。 编辑本段

公式

sinαsinβ=[cos(α-β)-cos(α+β)]/2

cosαcosβ=[cos(α-β)+cos(α+β)]/2

sinαcosβ=[sin(α+β)+sin(α-β)]/2

cosαsinβ=[sin(α+β)-sin(α-β)]/2

编辑本段

证明

积化和差恒等式可以通过展开角的和差恒等式的右手端来证明。

即只需要把等式右边用两角和差公式拆开就能证明:

sinαsinβ=-1/2[-2sinαsinβ]

=-1/2[(cosαcosβ-sinαsinβ)-(cosαcosβ+sinαsinβ)]

=-1/2[cos(α+β)-cos(α-β)]

其他的3个式子也是相同的证明方法。

(参见和差化积)

编辑本段

作用 积化和差公式可以将两个三角函数值的积化为另两个三角函数值的和乘以常数的形式,所以使用积化和差公式可以达到降次的效果。

在历史上,对数出现之前,积化和差公式被用来将乘除运算化为加减运算,运算需要利用三角函数表。

运算过程:将两个数通过乘、除10的方幂化为0到1之间的数,通过查表求出对应的反三角函数值,即将原式化为10^k*sinαsinβ的形式,套用积化和差后再次查表求三角函数的值,并最后利用加减算出结果。

对数出现后,积化和差公式的这个作用由更加便捷的对数取代。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo9.cn 版权所有 赣ICP备2023008801号-1

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务