EffectofmachiningparametersandheattreatmentontheresidualstressdistributionintitaniumalloyIMI-834
B.R.Sridhar∗,G.Devananda,K.Ramachandra,RamarajaBhat
GasTurbineResearchEstablishment,Bangalore560093,India
Abstract
TheresidualstressvariationintitaniumalloyIMI-834asafunctionofdepthfollowingmillingatdifferentfeeds,speedsanddepthsofcutwasdeterminedbyastrain-gaugetechniqueinvolvingblind-holedrilling.Theresidualstresseswerefoundtobecompressiveinnatureandtobedependentuponthemillingparameters.Heattreatmentwasfoundtorelievetheresidualstresses,thedegreeofstressreliefbeingfoundtoincreasewithincreaseintemperature.Optimumtemperaturesweredeterminedatwhichsignificantrelaxationoccurredwithoutadverselyaffectingthemicrostructureandmechanicalbehaviourofthematerial.©2003ElsevierB.V.Allrightsreserved.
Keywords:IMI-834;Strain-gaugetechnique;Residualstress
1.Introduction
IMI-834isanear-␣titaniumalloywiththenominalcom-positionTi–5.8Al–4.5Sn–4Zr–0.7Nb–0.5Mo–0.40Si–0.06C.Thisisacreepresistantalloywithaservicetemperatureupto600◦Candisprimarilyintendedforgasturbineaero-engineapplicationssuchasdiscs,ringsandblades.Residualstressesplayanimportantroleindeterminingthefatiguelifeofacomponent.Thiscallsforrelievingthesestressesinsuchcaseswhereanadverseeffectisseenonthefatiguelife.
Thispaperhighlightsthevariationinthemagnitudeanddistributionofresidualstresseslockedupinthematerialfollowingamillingoperationatdifferentspeeds,feedsanddepthsofcut.Theeffectsofvaryingtemperatureinrelievingthesestresseshavealsobeendiscussedinthepaper.
Residualstressesweremeasuredbythestandardstrain-gaugetechniqueinvolvingblind-holedrilling[1–7].Themethodcallsfortheuseofastrain-gaugerosetteofthesize25mm×25mm(shownschematicallyinFig.1)suppliedbyMicro-measurementGroup,USA[5].Ifε1,ε2andε3arethevaluesoftherelievedstrainnotedfromstraingauges1,2and3,respectively,ofthestraingaugerosetteusedduringblind-holedrilling,theprincipalresidualstressesσmaxandσminarecalculatedasbelow:
σmax
ε3+ε1=−
4Aε3+ε1
+4A
(ε3−ε1)2+(ε3+ε1−2ε2)24B
(1)(2)(3)
σmin=
(ε3−ε1)2+(ε3+ε1−2ε2)24B
tan2α=where
ε3+ε1−2ε2
ε3−ε1
¯b
B=−
2E
(1+ν)a¯A=−
2E
and(4)
inwhichαistheanglemadebyσmaxwithrespecttogauge
¯arethe1,νthePoisson’sratioofthematerialanda¯andb
uniformstresscoefficientsdeterminedbySchajerbyfiniteelementstudies,andavailableasafunctionofZ/D(holedepth/holediameter).
Theresidualstressesinthecuttingdirection(σc)andnor-maldirection(σn)werecalculatedusingtheexpressions:σc+σn=σmax+σmin
σc−σn=(σmax−σmin)cos2θ
whereθistheanglemadebyσcwithσmax.2.Experimentalprocedures
(5)(6)
Correspondingauthor.
E-mailaddress:sridharbr@mail.gtre.org(B.R.Sridhar).
0924-0136/03/$–seefrontmatter©2003ElsevierB.V.Allrightsreserved.doi:10.1016/S0924-0136(03)00612-5
∗
Hot-rolled,solution-treatedandgroundpickled50mmdiameterbarsweremachinedinto38mm×25mm×15mm
B.R.Sridharetal./JournalofMaterialsProcessingTechnology139(2003)628–634629
Fig.1.Strain-gaugerosettearrangementformeasuringresidualstresses.
rectangulartest-pieces.Inordertoremovetheresidualstressesinducedduringthefabricationofspecimens,thetest-pieceswerestressrelievedbykeepingthemat600◦Cfor1hinavacuumfurnacefollowedbyanargongasquench.
ThemachiningoperationswerecarriedoutonFN-2VHMTmillinglathe,5HPcapacity,usingaTMaxK-20facemillingcutterof50mmdiameterandfourTN-35-Mtitaniumnitridecoatedinserts(TPAN-1603PPN,WIDIA).ServoCut‘S’1:20solubleoilwasemployedasacuttingfluid.Thetest-piecesweremilledatdifferentmillingparametersbyvaryingthespeed(v,m/min),feed(f,mm/tooth/rev.)anddepthofcut(d,mm)asgiveninTable1.
Test-piecesmilledwiththeparameters,v=11m/min,f=0.056mm/tooth/rev.,d=0.25mmwerestressrelievedat400,500and600◦Cfor1hinavacuumfurnacefollowedbyanargongasquench.
Boththemachinedandheat-treatedtest-piecesweresub-jectedtoresidualstressmeasurementbyblind-holedrilling.
Table1
MillingparametersSl.no.v(m/min)f(mm/tooth/rev.)d(mm)111.000.0560.250211.000.1000.250356.000.0560.250456.000.1000.250511.000.0562.000611.000.1002.000756.000.0562.000856.000.1002.000935.000.0751.12510
35.00
0.075
1.125
Anairturbineassemblywasusedtodrillablindholeatthecentreofthestrain-gaugerosette(Fig.1)usedintheexper-iment.Drillingwascarriedoutatincrementaldepthsandateachdepththerelievedstrains,ε1,ε2andε3(ofthestraingauges1,2and3fromthestrain-gaugerosette)werenoted.ThesestrainswereusedintheevaluationofresidualstressesbytheuseofEqs.(1)–(6).
3.Results
Figs.2–9presentplotsoftheresidualstressdistributionasfunctionsofdepthbelowthesurfacefordifferentmillingparametersemployedinthepresentstudy.Negativevaluesofthemaximumandminimumresidualstressesindicatethattheresidualstresseswerecompressiveinnature.Themaximumstressesinthecuttingandnormaldirectionswerefoundtobeatadepthofabout0.1mmbelowthesurface.3.1.Effectoffeed(constantvandd)
Atlowspeed(11m/min)theresidualstresseswerefoundtodecreasewithincreaseoffeed(cf.Figs.2and3).However,athighspeed(56m/min)theywerefoundtoincreasewithincreaseinfeed(cf.Figs.4and5;Figs.8and9).Thepeakresidualstresswasalsoobservedtoslightlyshifttowardsthesurfacewithdecreaseinfeed(cf.Figs.2and3;Figs.4and5;Figs.6and7).
3.2.Effectofcuttingvelocity(constantfandd)
Themagnitudeofthecompressivestressesincreasedwithincreaseincuttingvelocity(cf.Figs.3and5;Figs.7and9).However,themagnitudewasfoundtodecreasewithincreaseincuttingvelocityatlowvaluesoffeedanddepthofcut(cf.Figs.2and4).Also,withincreaseincuttingspeed,thepeakresidualstresswasfoundtoshifttothesurface(Figs.3and5;Figs.6and8).Further,inafewcasesthedepthoftheresiduallystressedlayerincreasedwithincreaseinthemagnitudeoftheresidualstress.
3.3.Effectofdepthofcut(constantvandf)
Themagnitudeoftheresidualstressesdecreasedwithincreaseindepthofcut(cf.Figs.2and6;Figs.3and7;Figs.4and8;Figs.5and9).Thepeakresidualstresswasfoundtoshiftslightlytowardsthesurfacewithincreaseindepthofcut.Noobvioustrendwasseenpertainingtothedepthoftheresiduallystressedlayer.3.4.Effectofheattreatment
Figs.10–12revealtheeffectofheattreatmentatdifferenttemperatures(400–600◦C)onthemagnitudeanddistribu-tionoftheresidualstresses.Itwasfoundthatthemagnitudeaswellasthedepthoftheresiduallystressedlayerdecreased
630B.R.Sridharetal./JournalofMaterialsProcessingTechnology139(2003)628–634
Fig.2.Variationofresidualstressesduetoverticalfacemillingasafunctionofdepth.IMI-834;cuttingspeed,11m/min;feed,0.056mm/tooth/rev.;depthofcut,0.25mm.
withincreaseintemperature.Thedegreeofrelaxationwas60%at400◦C,75%at500◦Cand90%at600◦C.There-laxationratewasveryhighintheinitial0.25mmofdepthbutthereafteritdecreased,thedegreeofrelaxationbeingalmostlinearwithdepth(Figs.13and14).
4.Discussion
TheresultsobtainedforIMI-834subsequenttoamillingoperationwereconsistentwiththoseobtainedfortitaniumalloys,IMI-318(Ti–6Al–4V)andIMI-685(Ti–6Al–5Zr–0.5Mo–0.25Si)inthemachinedandpolishedcondition[6].Shiftofthepeakresidualstresstothesurfaceindicatedanincreaseinthedegreeofcoldwork[8,9].How-
ever,thisiscontradictedbyadecreaseinthepeakresidualstress,whichisalsosupposedtoincreasewithincreaseinthelevelofcoldworkinthesurfacelayers[8,9].Theseindicatethatthemillingparameterssuchasspeed,feedanddepthofcuthavearoletoplayindeterminingtheextentofcoldworkduringamachiningoperation.Theeffectofthemachiningparametersontheresultingresidualstressandotherresponsevariableshasbeenstudiedtheoreticallybydifferentauthors[10,11].Accordingly,thedependenceoftheresidualstressesonthemillingparameterscouldbeexplainedbythefollowinglinearequation:σ=b0+b1v+b2f+b3d
(7)
InEq.(7),coefficientsb0,b1,b2andb3canbedeterminedbyexperimentaldatarelatingtheresidualstressestothemillingparameters.Asperthisequationtheresidualstressesvary
Fig.3.Variationofresidualstressesduetoverticalfacemillingasafunc-tionofdepth.IMI-834;cuttingspeed,11m/min;feed,0.1mm/tooth/rev.;depthofcut,0.25mm.Fig.4.Variationofresidualstressesduetoverticalfacemillingasafunctionofdepth.IMI-834;speed,56m/min;feed,0.056mm/tooth/rev.;depthofcut,0.25mm.
B.R.Sridharetal./JournalofMaterialsProcessingTechnology139(2003)628–634631
Fig.5.Variationofresidualstressesduetoverticalfacemillingasafunctionofdepth.IMI-834;cuttingspeed,56m/min;feed,0.1mm/tooth/rev.;depthofcut,0.25mm.
linearlywithrespecttoanyparameterprovidedthatthereisconstancyoftheothertwo.Forexample,atthesamefanddthemagnitudeofresidualstressincreasesordecreases,respectively,withincreaseordecreaseofv.However,asex-plainedearlierandaspertheresidualstressdatapresentedinTable2,thistrendwasnotshownconsistently.Thisin-dicatedthatthemillingparameters,inadditiontoactingin-dependently,arelikelytointeractwitheachotherindeter-miningtheresidualstressstateofthematerial.Addingsomeinteractiveterms[10,11],Eq.(7)couldbemodifiedas:σ=b0+b1v+b2f+b3d+b4vf+b5vd+b6fd+b7vfd
(8)
Eq.(8)wassolvedusingthegenerateddatafortheresidualstressesinthecutting(σct)andnormal(σnt)directionsandrelationshipswereobtainedasgivenbelow:
σct=−1784.2+24.9v+17392.6f+438.1d−393vf
−3.4vd−4593.8fd+69.7vfd
σnt=−1782.5+18.5v+16221.1f+3.8d
−293.9vf−vd−3797fd+38.6vfd
(10)(9)
TheresidualstressesinthecuttingandnormaldirectionswereevaluatedusingEqs.(9)and(10),beinghighlighted
Fig.6.Variationofresidualstressesforverticalfacemillingasafunctionofdepth.IMI-834;cuttingspeed,11m/min;feed,0.056/tooth/rev.;depthofcut,2.0mm.Fig.7.Variationofresidualstressesduetoverticalfacemillingasafunc-tionofdepth.IMI-834;cuttingspeed,11m/min;feed,0.1mm/tooth/rev.;depthofcut,2.0mm.
632B.R.Sridharetal./JournalofMaterialsProcessingTechnology139(2003)628–634
Fig.8.Variationofresidualstressesduetoverticalfacemillingasafunc-tionofdepth.IMI-834;cuttingspeed,56m/min;feed,0.056mm/tooth/rev.;depthofcut,2.0mm.
inTables3and4.Experimentalandcalculatedvalueswerefoundtomatchreasonablywithminimalerrors.
Residualstressrelaxationintitaniumwasfoundtostartatabout280◦C[12].Stressrelaxationshavebeenassoci-atedwiththeonsetofmicro-plasticdeformationsresultingintherearrangement/annihilationofdislocations[13].Anyprocessessuchasprecipitationscanadverselyaffectthesephenomenaandreducetherelaxationrates.
Relaxationsobservedat400,500and600◦CinIMI-834wereconsistentwiththegenerallyobservedtrend.TitaniumalloyIMI-834issimilartotitaniumalloyIMI-685thatwasfoundtobepronetosilicideprecipitation[14].Theincreaseinstressrelaxationwithincreaseintemperatureindicatedthatnodeleteriousprecipitationssuchassilicidesoccurred
Fig.9.Variationofresidualstressesduetoverticalfacemillingasafunc-tionofdepth.IMI-834;cuttingspeed,56m/min;feed,0.1mm/tooth/rev.;depthofcut,2.0mm.Fig.10.Variationofresidualstressesforverticalfacemilling:cuttingspeed,11m/min;feed,0.056/tooth/rev.;depthofcut,0.25mm.Stressrelievedat400◦C.
Fig.11.Variationofresidualstressesforverticalfacemilling:cuttingspeed,11m/min;feed,0.056mm/tooth/rev.;depthofcut,0.25mm.Stressrelievedat500◦C.
Fig.12.Variationofresidualstressesforverticalfacemilling:cuttingspeed,11m/min;feed,0.056mm/tooth/rev.;depthofcut,0.25mm.Stressrelievedat600◦C.
B.R.Sridharetal./JournalofMaterialsProcessingTechnology139(2003)628–634633
Fig.13.Variationofresidualstressinthecuttingdirection,σcforverticalfacemillingasafunctionofdepthatdifferenttemperaturescuttingspeed,11m/min;feed,0.056mm/tooth/rev.;depthofcut,0.25mm.
Fig.14.Variationoftherelaxationofresidualstressinthecuttingdirection,σcasafunctionofdepthatdifferenttemperatures.
Table2
PeakresidualstressesfordifferentmillingparametersSl.no.1a2a3b4b1c5c8d4d1e7e6f4f
ab
v(m/min)11.0056.0011.0056.0011.0011.0056.0056.0011.0011.0056.0056.00
f(mm/tooth/rev.)0.0560.0560.1000.1000.0560.1000.0560.1000.0560.0560.1000.100
d(mm)0.2500.2502.0002.0000.2500.2502.0002.0000.2502.0000.2502.000
σc(MPa)−738.72−604.02−174.31−502.44−738.72−205.93−238.17−502.44−738.72−412.49−815.57−502.44
σn(MPa)−806.04−701.04−198.56−429.74−806.04−271.82−274.53−429.74−806.04−473.09−730.30−429.74
Withincreaseinvatlowfandd,thepeakresidualstresseshavedecreased.Withincreaseinvathighfandd,thepeakresidualstresseshaveincreased.cWithincreaseinfatlowvandd,thepeakresidualstresseshavedecreased.dWithincreaseinfathighvandd,thepeakresidualstresseshaveincreased.eWithincreaseindatlowvandf,thepeakresidualstresseshavedecreased.fWithincreaseindathighvandf,thepeakresidualstresseshavedecreased.
Table3
Peakresidualstresses(σc)inthecuttingdirectiona,bSl.no.123456710
ab
v(m/min)11.0011.0056.0056.0011.0011.0056.0056.0035.0035.00
f(mm/tooth/rev.)0.0560.1000.0560.1000.0560.1000.0560.1000.0750.075
d(mm)0.2500.2500.2500.2502.0002.0002.0002.0001.1251.125
σc(MPa)−738.72−205.93−604.02−815.57−412.49−174.31−238.17−502.44−445.93−410.81
σct(MPa)−732.12−199.15−597.58−808.19−405.93−167.61−231.79−495.43−463.61−463.61
(σc−σct)(MPa)−6.60−6.78−6.44−7.37−6.56−6.70−6.37−7.00−17.68−52.80
(σc−σct)2(MPa)243.55.9741.4754.3243.0344.40.5849.00312.582787.84
Sumofsquarederror=3463.24.
σct=−1784.2+24.9v+17392.6f+438.1d−393vf−3.4vd−4593.8fd+69.7vfd.
634B.R.Sridharetal./JournalofMaterialsProcessingTechnology139(2003)628–634
Table4
Peakresidualstresses(σn)inthenormaldirectiona,bSl.no.123456710
ab
v(m/min)11.0011.0056.0056.0011.0011.0056.0056.0035.0035.00
f(mm/tooth/rev.)0.0560.1000.0560.1000.0560.1000.0560.1000.0750.075
d(mm)0.2500.2500.2500.2502.0002.0002.0002.0001.1251.125
σn−806.04−271.82−701.04−730.30−473.09−198.56−274.53−429.74−471.91−480.70
σnt(MPa)−804.18−269.82−699.30−727.86−471.28−196.63−272.94−427.60−496.46−496.46
(σn−σnt)(MPa)−1.85−1.99−1.73−2.44−1.81−1.93−1.59−2.1424.5515.76
(σn−σnt)2(MPa)23.423.962.995.953.283.722.534.58602.70248.38
Sumofsquarederror=881.51.
σnt=−1782.5+18.5v+16221.1f+3.8d−293.9vf−vd−3797fd+38.6vfd.
atthestressrelievingtemperaturesemployed.Greaterre-laxationatthesurfacecomparedtothecore(Fig.14)couldbeattributedtotheeffectofgreaterresidualstressgradientsatthesurfacethanatthecore[11,15].Majorcontributiontotheoverallstressrelaxationappearedtooriginatefromtheinitial200to300mofthesurfacelayers.
Acknowledgements
TheauthorsexpresstheirsincerethankstotheDirector,GTRE,forextendingfacilitiesandgivingencouragementthroughoutthecourseofthepresentwork.References
[1]J.Mathar,Trans.ASME56(4)(1934)249–254.
[2]R.A.Kelsey,Proc.Soc.Exp.StressAnal.14(1)(1956)181–194.[3]R.J.Rendler,I.Vigness,Proc.Soc.Exp.StressAnal.23(2)(1966)
577–586.
[4]G.S.Schajer,J.Eng.Mater.Technol.110(4)(1988)338–349.[5]TechnicalBulletin304-FandInstructionManualforRS-200-01
MillingGuide,MeasurementsGroupInc.,Raleigh,USA,1988.[6]B.R.Sridhar,W.G.Nafde,K.A.Padmanabhan,J.Mater.Sci.27
(1992)5783–5788.
[7]AnnualBookofASTMStandards,E837-45,ASTM,Philadelphia,
1987,pp.991–997.
[8]B.R.Sridhar,K.Ramachandra,K.A.Padmanabhan,J.Mater.Sci.
31(1996)4381–4385.
[9]H.Wohlfarht,in:H.O.Fuchs(Ed.),ProceedingsoftheSecond
InternationalConferenceonShotPeening(ICSP-2),AmericanShotPeeningSociety,NewJersey,1984,pp.306–315.
[10]E.HarringtonJr.,IndustrialQualityControl21(10)(1965)494–498.[11]G.Derringer,R.Suich,J.Qual.Technol.12(4)(1980)214–219.[12]O.Vohringer,T.Hirsch,E.Macherauch,Titaniumscienceandtech-nology,in:G.Luetjering,W.Zwicker,W.Bunk(Eds.),FifthInter-nationalConferenceonTitanium,DeutscheGesellschaftfurMetal-lkundeE.V.,vol.4,Oberusel,1984,pp.2203–2210.
[13]O.Vohringer,AdvancesinSurfaceTreatmentTechnology,Applica-tions.
[14]D.F.Neal,P.A.Blenkinsop,TitaniumandTitaniumAlloys,in:
J.C.Williams,A.Belov(Eds.),ProceedingsofThirdInternationalConferenceonTitanium,vol.3,PlenumPress,NewYork,1982,pp.2003–2014.
[15]A.L.Esquivel,R.Evans,Exp.Mech.8(1968)496.
5.Conclusions
1.Residualstressesduetothemillingoperationsforthemillingparametersemployedwerecompressiveinnature.
2.Thevariationinthemagnitudesoftheresidualstressesdidnotrevealanydefinitetrendwithrespecttothemillingparameters.
3.Alinearrelationshipcouldnotexplainthevariationoftheresidualstresseswithrespecttothemillingparame-ters,butapolynomialrelationshipinvolvingbothlinearandinteractivetermscouldexplainthevariationswithreasonableaccuracy.
4.Stressrelievingtreatmentsledtotherelaxationofresidualstressesalmostlinearlywithdepthfromthesurface.
5.Therelaxationratesincreasedwithincreasingtempera-tureanddidnotrevealanyevidencefordeleteriouspre-cipitationsuchasofsilicides.
6.Thegreaterrelaxationratesatthesurfacecomparedtothecorecouldbeattributedtothesteeperresidualstressgradientsatthesurfacethanatthecore.
7.Themajorcontributiontotheoverallstressrelaxationappearedtooriginatefromthesurfacelayers.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo9.cn 版权所有 赣ICP备2023008801号-1
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务