General Purpose TransistorsNPN Silicon
3COLLECTORBCW72LT13
1
BASE2EMITTER
MAXIMUM RATINGS
Rating
Collector–Emitter VoltageCollector–Base VoltageEmitter–Base Voltage
Collector Current — Continuous
SymbolV CEOV CBOV EBOI C
Value45505.0100
1
2
UnitVdcVdcVdcmAdc
CASE 318–08, STYLE 6SOT–23 (TO–236AB)
THERMAL CHARACTERISTICS
Characteristic
Total Device Dissipation FR– 5 Board, (1)TA = 25°C
Derate above 25°C
Thermal Resistance, Junction to AmbientTotal Device Dissipation
Alumina Substrate, (2) TA = 25°CDerate above 25°C
Thermal Resistance, Junction to AmbientJunction and Storage Temperature
SymbolPD
Max2251.8
RθJAPD
5563002.4
RθJATJ , Tstg
417–55 to +150
UnitmWmW/°C°C/WmWmW/°C°C/W°C
DEVICE MARKING
BCW72LT1 = K2
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
OFF CHARACTERISTICS
Collector–Emitter Breakdown Voltage(IC = 2.0mAdc, VEB = 0 )
Collector–Emitter Breakdown Voltage(IC = 2.0 mAdc, VEB = 0 )
Collector–Base Breakdown Voltage(IC = 10 µAdc, IE= 0 )
Emitter–Base Breakdown Voltage(I E= 10 µAdc, I C= 0)Collector Cutoff Current(V CB= 20 Vdc, I E= 0)
(V CB= 20 Vdc, I E= 0, T A=100°C )
1. FR– 5 = 1.0 x 0.75 x 0.062 in.
2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.
V (BR)EBOI CBO
——
——
10010
nAdcµAdc
5.0
—
—
Vdc
V (BR)CBO
50
—
—
Vdc
V (BR)CES
45
—
—
Vdc
V (BR)CEO
45
—
—
Vdc
M14–1/6
LESHAN RADIO COMPANY, LTD.
BCW72LT1ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (Continued)
Characteristic
Symbol
Min
Typ
Max
Unit
ON CHARACTERISTICS
DC Current Gain
( I C= 2.0 mAdc, VCE = 5.0 Vdc )
Collector–Emitter Saturation Voltage( I C = 10 mAdc, IB = 0.5 mAdc )( I C = 50 mAdc, IB = 2.5 mAdc )Base–Saturation Voltage
( I C = 50 mAdc, I B = 2.5 mAdc )Base–Emitter On Voltage
(I C = 2.0 mAdc, V CE = 5.0 Vdc)
hFEV CE(sat)
——
V BE(on)V BE(on)
—0.6
—0.210.85—
0.25——0.75
Vdc Vdc
200
—
450
— Vdc
SMALL–SIGNAL CHARACTERISTICS
Current–Gain — Bandwidth Product
(I C = 10 mAdc, V CE = 5.0 Vdc, f = 100 MHz)Output Capacitance
( VCB = 10 Vdc,I E= 0, f = 1.0 MHz)Input Capacitance
(I E = 0, V CB = 10 Vdc, f = 1.0 MHz)Noise Figure
( I C = 0.2 mAdc, V CE = 5.0 Vdc, R S = 2.0 kΩ, f = 1.0 kHz, BW = 200 Hz )f TC oboC iboNF
————
300 —9.0—
—4.0 —10
MHzpFpFdB
EQUIVALENT SWITCHING TIME TEST CIRCUITS
+3.0 V
10 < t 1 < 500 µs
+3.0 V
300 ns
DUTY CYCLE = 2%
– 0.5 V
<1.0 ns +10.9 V
275
10 k
DUTY CYCLE = 2%
0
t 1
+10.9 V
275
10 k
C S < 4.0 pF*
– 9.1 V
<1.0 ns
1N916
C S < 4.0 pF*
*Total shunt capacitance of test jig and connectors
Figure 1. Turn–On Time
Figure 2. Turn–Off Time
M14–2/6
LESHAN RADIO COMPANY, LTD.
BCW72LT1TYPICAL NOISE CHARACTERISTICS
(V CE = 5.0 Vdc, T A = 25°C)
20
100
IC=1.0 mA
e n , NOISE VOLTAGE (nV)BANDWIDTH = 1.0 Hz
R S ~~ 0
5020
IC=1.0mA
300µA
BANDWIDTH = 1.0 Hz
R~ ~ S
10
300µA
I n , NOISE CURRENT (pA)105.02.01.00.50.20.1
10
20
50
100
200
500
100µA
7.05.0
100µA
3.0
10µA
30µA
30µA
10µA
1.0k
2.0k
5.0k
10 k
2.010
20
50
100
200
5001.0k
2.0k
5.0k
10 k
f, FREQUENCY (Hz)f, FREQUENCY (Hz)
Figure 3. Noise VoltageFigure 4. Noise Current
NOISE FIGURE CONTOURS
(V CE = 5.0 Vdc, T A = 25°C)
500k200k
BANDWIDTH = 1.0 Hz
1.0M500k
BANDWIDTH = 1.0 Hz
100k50k20k10k
5.0k2.0k1.0k5002001005010
20
30
50
70100
200
300
5007001.0K
R S , SOURCE RESISTANCE ( Ω )R S , SOURCE RESISTANCE ( Ω )200k100k50k20k10k5.0k2.0k1.0k500200100
10
20
30
50
70
100
200
300
5007001.0K
2.0 dB3.0 dB4.0dB6.0 dB10 dB1.0 dB2.0 dB3.0 dB5.0 dB8.0 dBI C , COLLECTOR CURRENT (µA)I C , COLLECTOR CURRENT (µA)
Figure 5. Narrow Band, 100 Hz
500k
Figure 6. Narrow Band, 1.0 kHz
R S , SOURCE RESISTANCE ( Ω )200k100k50k20k10k5.0k2.0k1.0k5002001005010
20
30
50
70
100
200
10 Hz to 15.7KHz
Noise Figure is Defined as:
NF= 20 log 10
1.0 dB2.0 dB5.0 dB8.0 dB300
5007001.0K
(–––––––––––––––)4KTR
S
e n 2 +4KTRS +I n2 R S2
1/ 2
3.0 dBe n= Noise Voltage of the Transistor referred to the input. (Figure 3)
I n= Noise Current of the Transistor referred to the input. (Figure 4)K= Boltzman’s Constant (1.38 x 10 –23 j/ °K)T= Temperature of the Source Resistance ( °K)R s= Source Resistance ( Ω )
I C , COLLECTOR CURRENT (µA)
Figure 7. Wideband
8M14–3/6
LESHAN RADIO COMPANY, LTD.
BCW72LT1TYPICAL STATIC CHARACTERISTICS
400
T J = 125°ChFE , DC CURRENT GAIN200
25°C1008060
– 55°CV CE= 1.0 VV CE= 10 V0.020.03
0.050.07
0.1
0.2
0.3
0.5
0.7
1.0
2.0
3.0
5.07.0
10
20
30
50
70
100
40
0.0040.0060.01
I C , COLLECTOR CURRENT (mA)
Figure 8. DC Current Gain
V CE , COLLECTOR– EMITTER VOLTAGE (VOLTS)I C , COLLECTOR CURRENT (mA)1.0100
T J = 25°C0.8
80
T A = 25°CPULSE WIDTH =300 µsDUTY CYCLE<2.0%I B= 500 µA400 µA300 µA0.6
I C= 1.0 mA 10 mA50 mA 100 mA60
200 µA40
0.4
100 µA20
0.2
0
0.0020.0050.010.02
0.050.10.2
0.51.02.0
5.0
10
20
00
5.0
10
15
20
25
30
35
40
I B , BASE CURRENT (mA)V CE , COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 9. Collector Saturation Region
1.41.2
Figure 10. Collector Characteristics
θ V , TEMPERATURE COEFFICIENTS (mV/°C)1.6
T J = 25°C
*APPLIES for I C / I B< h FE / 225°C to 125°C∗ θ VC for V CE(sat)
–55°C to 25°C0.80
V, VOLTAGE (VOLTS)1.00.80.60.40.200.1
0.2
0.5
1.0
2.0
5.0
10
20
50
100
V BE(sat) @ I C /I B = 10V BE(on)@ V CE= 1.0 V–0.8
25°C to 125°C–1.6
V CE(sat) @ I C /I B = 10θ VB for V BE
–2.4
0.1
0.2
0.5
1.0
2.0
5.0
–55°C to 25°C102050100
I C , COLLECTOR CURRENT (mA)I C , COLLECTOR CURRENT (mA)
Figure 11. “On” Voltages
Figure 12. Temperature Coefficients
M14–4/6
LESHAN RADIO COMPANY, LTD.
BCW72LT1TYPICAL DYNAMIC CHARACTERISTICS
30020010070
V CC= 3.0 VIC /I B= 10T J= 25°C
1000700500300
t s
t, TIME (ns)3020107.05.03.01.0
2.0
3.0
5.0
7.0
10
t f
td @V BE(off)= 0.5 Vdc
t, TIME (ns)50
2001007050302010
20
30
50
70
100
t f
VCC= 3.0 VIC /I B= 10IB1=IB2
T J= 25°C
1.0
2.0
3.0
5.0
7.0
10
20
30
50
70
100
I C , COLLECTOR CURRENT (mA)
f T, CURRENT– GAIN BANDWIDTH PRODUCT (MHz)I C , COLLECTOR CURRENT (mA)
Figure 13. Turn–On Time
500
10.0
Figure 14. Turn–Off Time
300
T J = 25°Cf=100MHz
V CE=20 V
C, CAPACITANCE (pF)7.05.0
T J= 25°Cf =1.0MHz
C ibC ob
200
5.0 V
3.0
10070500.5
2.0
1.0
0.7
1.0
2.0
3.0
5.07.0
10
20
30
50
0.05
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
I C , COLLECTOR CURRENT (mA)
V R , REVERSE VOLTAGE (VOLTS)
Figure 15. Current–Gain — Bandwidth Product
hoe , OUTPUT ADMITTANCE ( µmhos )20
20010070503020107.05.03.02.0
0.1
0.2
Figure 16. Capacitance
h ie , INPUT IMPEDANCE ( kΩ )107.05.03.02.01.00.70.50.30.2
0.1
0.2
0.5
1.0
200 @ I C= 1.0 mAh fe~~ VCE= 10 Vdc
f = 1.0 kHzT A = 25°C
VCE= 10 Vdcf = 1.0 kHzT A= 25°C
200 @ I C= 1.0 mAh fe~~ 2.05.01020501000.51.02.05.0102050100
I C , COLLECTOR CURRENT (mA)I C , COLLECTOR CURRENT (mA)
Figure 17. Input ImpedanceFigure 18. Output Admittance
M14–5/6
LESHAN RADIO COMPANY, LTD.
BCW72LT1r( t) TRANSIENT THERMAL RESISTANCE(NORMALIZED)1.00.70.50.30.20.10.070.050.030.020.010.01
D = 0.5
0.20.10.050.020.01
SINGLE PULSE
P(pk)
t 1
t 2
2.0
5.0
10
20
50
100
200
500
1.0k
FIGURE 19A
DUTY CYCLE, D = t 1 / t 2
D CURVES APPLY FOR POWERPULSE TRAIN SHOWN
READ TIME AT t 1 (SEE AN–569)Z θJA(t) = r(t) • RθJA
T J(pk) – T A = P (pk) Z θJA(t)
2.0k
5.0k
10k
20k
50k
100k
0.020.050.10.20.51.0
t, TIME (ms)
Figure 19. Thermal Response
104
DESIGN NOTE: USE OF THERMAL RESPONSE DATA
V CC = 30 Vdc
103
102
I CEO
101
100
I CBOANDI CEX @ V BE(off) = 3.0 Vdc10–1
10–2
–4
–2
0
+20
+40
+60
+80
+100
+120
+140
+160
T J , JUNCTION TEMPERATURE (°C)
Figure 19A.
400
A train of periodical power pulses can be represented by themodel as shown in Figure 19A. Using the model and the devicethermal response the normalized effective transient thermal re-sistance of Figure 19 was calculated for various duty cycles. To find Z θJA(t) , multiply the value obtained from Figure 19 bythe steady state value R θJA .Example:
The MPS3904 is dissipating 2.0 watts peak under the follow-ing conditions:
t 1 = 1.0 ms, t 2 = 5.0 ms. (D = 0.2)
Using Figure 19 at a pulse width of 1.0 ms and D = 0.2, thereading of r(t) is 0.22.
The peak rise in junction temperature is therefore∆T = r(t) x P (pk) x R θJA = 0.22 x 2.0 x 200 = 88°C.For more information, see AN–569.
I C , COLLECTOR CURRENT (nA)I C , COLLECTOR CURRENT (mA)200100604020106.04.0
2.0
4.0
6.0
8.0
1.0 ms
100µs10µs
1.0 sdc
T C = 25°CT A = 25°C
T J = 150°C
CURRENT LIMITTHERMAL LIMITSECOND BREAKDOWN LIMIT10
dc
The safe operating area curves indicate I C –V CE limits ofthe transistor that must be observed for reliable operation.Collector load lines for specific circuits must fall below thelimits indicated by the applicable curve.
The data of Figure 20 is based upon T J(pk) = 150°C; T C orT A is variable depending upon conditions. Pulse curves arevalid for duty cycles to 10% provided T J(pk) <150°C. T J(pk)may be calculated from the data in Figure 19. At high caseor ambient temperatures, thermal limitations will reduce thepower that can be handled to values less than the limitationsimposed by second breakdown.
40
20
V CE , COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 20.
M14–6/6
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo9.cn 版权所有 赣ICP备2023008801号-1
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务