您好,欢迎来到化拓教育网。
搜索
您的当前位置:首页BCW73LT1资料

BCW73LT1资料

来源:化拓教育网
LESHAN RADIO COMPANY, LTD.

General Purpose TransistorsNPN Silicon

3COLLECTORBCW72LT13

1

BASE2EMITTER

MAXIMUM RATINGS

Rating

Collector–Emitter VoltageCollector–Base VoltageEmitter–Base Voltage

Collector Current — Continuous

SymbolV CEOV CBOV EBOI C

Value45505.0100

1

2

UnitVdcVdcVdcmAdc

CASE 318–08, STYLE 6SOT–23 (TO–236AB)

THERMAL CHARACTERISTICS

Characteristic

Total Device Dissipation FR– 5 Board, (1)TA = 25°C

Derate above 25°C

Thermal Resistance, Junction to AmbientTotal Device Dissipation

Alumina Substrate, (2) TA = 25°CDerate above 25°C

Thermal Resistance, Junction to AmbientJunction and Storage Temperature

SymbolPD

Max2251.8

RθJAPD

5563002.4

RθJATJ , Tstg

417–55 to +150

UnitmWmW/°C°C/WmWmW/°C°C/W°C

DEVICE MARKING

BCW72LT1 = K2

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic

Symbol

Min

Typ

Max

Unit

OFF CHARACTERISTICS

Collector–Emitter Breakdown Voltage(IC = 2.0mAdc, VEB = 0 )

Collector–Emitter Breakdown Voltage(IC = 2.0 mAdc, VEB = 0 )

Collector–Base Breakdown Voltage(IC = 10 µAdc, IE= 0 )

Emitter–Base Breakdown Voltage(I E= 10 µAdc, I C= 0)Collector Cutoff Current(V CB= 20 Vdc, I E= 0)

(V CB= 20 Vdc, I E= 0, T A=100°C )

1. FR– 5 = 1.0 x 0.75 x 0.062 in.

2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.

V (BR)EBOI CBO

——

——

10010

nAdcµAdc

5.0

Vdc

V (BR)CBO

50

Vdc

V (BR)CES

45

Vdc

V (BR)CEO

45

Vdc

M14–1/6

LESHAN RADIO COMPANY, LTD.

BCW72LT1ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (Continued)

Characteristic

Symbol

Min

Typ

Max

Unit

ON CHARACTERISTICS

DC Current Gain

( I C= 2.0 mAdc, VCE = 5.0 Vdc )

Collector–Emitter Saturation Voltage( I C = 10 mAdc, IB = 0.5 mAdc )( I C = 50 mAdc, IB = 2.5 mAdc )Base–Saturation Voltage

( I C = 50 mAdc, I B = 2.5 mAdc )Base–Emitter On Voltage

(I C = 2.0 mAdc, V CE = 5.0 Vdc)

hFEV CE(sat)

——

V BE(on)V BE(on)

—0.6

—0.210.85—

0.25——0.75

Vdc Vdc

200

450

— Vdc

SMALL–SIGNAL CHARACTERISTICS

Current–Gain — Bandwidth Product

(I C = 10 mAdc, V CE = 5.0 Vdc, f = 100 MHz)Output Capacitance

( VCB = 10 Vdc,I E= 0, f = 1.0 MHz)Input Capacitance

(I E = 0, V CB = 10 Vdc, f = 1.0 MHz)Noise Figure

( I C = 0.2 mAdc, V CE = 5.0 Vdc, R S = 2.0 kΩ, f = 1.0 kHz, BW = 200 Hz )f TC oboC iboNF

————

300 —9.0—

—4.0 —10

MHzpFpFdB

EQUIVALENT SWITCHING TIME TEST CIRCUITS

+3.0 V

10 < t 1 < 500 µs

+3.0 V

300 ns

DUTY CYCLE = 2%

– 0.5 V

<1.0 ns +10.9 V

275

10 k

DUTY CYCLE = 2%

0

t 1

+10.9 V

275

10 k

C S < 4.0 pF*

– 9.1 V

<1.0 ns

1N916

C S < 4.0 pF*

*Total shunt capacitance of test jig and connectors

Figure 1. Turn–On Time

Figure 2. Turn–Off Time

M14–2/6

LESHAN RADIO COMPANY, LTD.

BCW72LT1TYPICAL NOISE CHARACTERISTICS

(V CE = 5.0 Vdc, T A = 25°C)

20

100

IC=1.0 mA

e n , NOISE VOLTAGE (nV)BANDWIDTH = 1.0 Hz

R S ~~ 0

5020

IC=1.0mA

300µA

BANDWIDTH = 1.0 Hz

R~ ~ S

10

300µA

I n , NOISE CURRENT (pA)105.02.01.00.50.20.1

10

20

50

100

200

500

100µA

7.05.0

100µA

3.0

10µA

30µA

30µA

10µA

1.0k

2.0k

5.0k

10 k

2.010

20

50

100

200

5001.0k

2.0k

5.0k

10 k

f, FREQUENCY (Hz)f, FREQUENCY (Hz)

Figure 3. Noise VoltageFigure 4. Noise Current

NOISE FIGURE CONTOURS

(V CE = 5.0 Vdc, T A = 25°C)

500k200k

BANDWIDTH = 1.0 Hz

1.0M500k

BANDWIDTH = 1.0 Hz

100k50k20k10k

5.0k2.0k1.0k5002001005010

20

30

50

70100

200

300

5007001.0K

R S , SOURCE RESISTANCE ( Ω )R S , SOURCE RESISTANCE ( Ω )200k100k50k20k10k5.0k2.0k1.0k500200100

10

20

30

50

70

100

200

300

5007001.0K

2.0 dB3.0 dB4.0dB6.0 dB10 dB1.0 dB2.0 dB3.0 dB5.0 dB8.0 dBI C , COLLECTOR CURRENT (µA)I C , COLLECTOR CURRENT (µA)

Figure 5. Narrow Band, 100 Hz

500k

Figure 6. Narrow Band, 1.0 kHz

R S , SOURCE RESISTANCE ( Ω )200k100k50k20k10k5.0k2.0k1.0k5002001005010

20

30

50

70

100

200

10 Hz to 15.7KHz

Noise Figure is Defined as:

NF= 20 log 10

1.0 dB2.0 dB5.0 dB8.0 dB300

5007001.0K

(–––––––––––––––)4KTR

S

e n 2 +4KTRS +I n2 R S2

1/ 2

3.0 dBe n= Noise Voltage of the Transistor referred to the input. (Figure 3)

I n= Noise Current of the Transistor referred to the input. (Figure 4)K= Boltzman’s Constant (1.38 x 10 –23 j/ °K)T= Temperature of the Source Resistance ( °K)R s= Source Resistance ( Ω )

I C , COLLECTOR CURRENT (µA)

Figure 7. Wideband

8M14–3/6

LESHAN RADIO COMPANY, LTD.

BCW72LT1TYPICAL STATIC CHARACTERISTICS

400

T J = 125°ChFE , DC CURRENT GAIN200

25°C1008060

– 55°CV CE= 1.0 VV CE= 10 V0.020.03

0.050.07

0.1

0.2

0.3

0.5

0.7

1.0

2.0

3.0

5.07.0

10

20

30

50

70

100

40

0.0040.0060.01

I C , COLLECTOR CURRENT (mA)

Figure 8. DC Current Gain

V CE , COLLECTOR– EMITTER VOLTAGE (VOLTS)I C , COLLECTOR CURRENT (mA)1.0100

T J = 25°C0.8

80

T A = 25°CPULSE WIDTH =300 µsDUTY CYCLE<2.0%I B= 500 µA400 µA300 µA0.6

I C= 1.0 mA 10 mA50 mA 100 mA60

200 µA40

0.4

100 µA20

0.2

0

0.0020.0050.010.02

0.050.10.2

0.51.02.0

5.0

10

20

00

5.0

10

15

20

25

30

35

40

I B , BASE CURRENT (mA)V CE , COLLECTOR–EMITTER VOLTAGE (VOLTS)

Figure 9. Collector Saturation Region

1.41.2

Figure 10. Collector Characteristics

θ V , TEMPERATURE COEFFICIENTS (mV/°C)1.6

T J = 25°C

*APPLIES for I C / I B< h FE / 225°C to 125°C∗ θ VC for V CE(sat)

–55°C to 25°C0.80

V, VOLTAGE (VOLTS)1.00.80.60.40.200.1

0.2

0.5

1.0

2.0

5.0

10

20

50

100

V BE(sat) @ I C /I B = 10V BE(on)@ V CE= 1.0 V–0.8

25°C to 125°C–1.6

V CE(sat) @ I C /I B = 10θ VB for V BE

–2.4

0.1

0.2

0.5

1.0

2.0

5.0

–55°C to 25°C102050100

I C , COLLECTOR CURRENT (mA)I C , COLLECTOR CURRENT (mA)

Figure 11. “On” Voltages

Figure 12. Temperature Coefficients

M14–4/6

LESHAN RADIO COMPANY, LTD.

BCW72LT1TYPICAL DYNAMIC CHARACTERISTICS

30020010070

V CC= 3.0 VIC /I B= 10T J= 25°C

1000700500300

t s

t, TIME (ns)3020107.05.03.01.0

2.0

3.0

5.0

7.0

10

t f

td @V BE(off)= 0.5 Vdc

t, TIME (ns)50

2001007050302010

20

30

50

70

100

t f

VCC= 3.0 VIC /I B= 10IB1=IB2

T J= 25°C

1.0

2.0

3.0

5.0

7.0

10

20

30

50

70

100

I C , COLLECTOR CURRENT (mA)

f T, CURRENT– GAIN BANDWIDTH PRODUCT (MHz)I C , COLLECTOR CURRENT (mA)

Figure 13. Turn–On Time

500

10.0

Figure 14. Turn–Off Time

300

T J = 25°Cf=100MHz

V CE=20 V

C, CAPACITANCE (pF)7.05.0

T J= 25°Cf =1.0MHz

C ibC ob

200

5.0 V

3.0

10070500.5

2.0

1.0

0.7

1.0

2.0

3.0

5.07.0

10

20

30

50

0.05

0.1

0.2

0.5

1.0

2.0

5.0

10

20

50

I C , COLLECTOR CURRENT (mA)

V R , REVERSE VOLTAGE (VOLTS)

Figure 15. Current–Gain — Bandwidth Product

hoe , OUTPUT ADMITTANCE ( µmhos )20

20010070503020107.05.03.02.0

0.1

0.2

Figure 16. Capacitance

h ie , INPUT IMPEDANCE ( kΩ )107.05.03.02.01.00.70.50.30.2

0.1

0.2

0.5

1.0

200 @ I C= 1.0 mAh fe~~ VCE= 10 Vdc

f = 1.0 kHzT A = 25°C

VCE= 10 Vdcf = 1.0 kHzT A= 25°C

200 @ I C= 1.0 mAh fe~~ 2.05.01020501000.51.02.05.0102050100

I C , COLLECTOR CURRENT (mA)I C , COLLECTOR CURRENT (mA)

Figure 17. Input ImpedanceFigure 18. Output Admittance

M14–5/6

LESHAN RADIO COMPANY, LTD.

BCW72LT1r( t) TRANSIENT THERMAL RESISTANCE(NORMALIZED)1.00.70.50.30.20.10.070.050.030.020.010.01

D = 0.5

0.20.10.050.020.01

SINGLE PULSE

P(pk)

t 1

t 2

2.0

5.0

10

20

50

100

200

500

1.0k

FIGURE 19A

DUTY CYCLE, D = t 1 / t 2

D CURVES APPLY FOR POWERPULSE TRAIN SHOWN

READ TIME AT t 1 (SEE AN–569)Z θJA(t) = r(t) • RθJA

T J(pk) – T A = P (pk) Z θJA(t)

2.0k

5.0k

10k

20k

50k

100k

0.020.050.10.20.51.0

t, TIME (ms)

Figure 19. Thermal Response

104

DESIGN NOTE: USE OF THERMAL RESPONSE DATA

V CC = 30 Vdc

103

102

I CEO

101

100

I CBOANDI CEX @ V BE(off) = 3.0 Vdc10–1

10–2

–4

–2

0

+20

+40

+60

+80

+100

+120

+140

+160

T J , JUNCTION TEMPERATURE (°C)

Figure 19A.

400

A train of periodical power pulses can be represented by themodel as shown in Figure 19A. Using the model and the devicethermal response the normalized effective transient thermal re-sistance of Figure 19 was calculated for various duty cycles. To find Z θJA(t) , multiply the value obtained from Figure 19 bythe steady state value R θJA .Example:

The MPS3904 is dissipating 2.0 watts peak under the follow-ing conditions:

t 1 = 1.0 ms, t 2 = 5.0 ms. (D = 0.2)

Using Figure 19 at a pulse width of 1.0 ms and D = 0.2, thereading of r(t) is 0.22.

The peak rise in junction temperature is therefore∆T = r(t) x P (pk) x R θJA = 0.22 x 2.0 x 200 = 88°C.For more information, see AN–569.

I C , COLLECTOR CURRENT (nA)I C , COLLECTOR CURRENT (mA)200100604020106.04.0

2.0

4.0

6.0

8.0

1.0 ms

100µs10µs

1.0 sdc

T C = 25°CT A = 25°C

T J = 150°C

CURRENT LIMITTHERMAL LIMITSECOND BREAKDOWN LIMIT10

dc

The safe operating area curves indicate I C –V CE limits ofthe transistor that must be observed for reliable operation.Collector load lines for specific circuits must fall below thelimits indicated by the applicable curve.

The data of Figure 20 is based upon T J(pk) = 150°C; T C orT A is variable depending upon conditions. Pulse curves arevalid for duty cycles to 10% provided T J(pk) <150°C. T J(pk)may be calculated from the data in Figure 19. At high caseor ambient temperatures, thermal limitations will reduce thepower that can be handled to values less than the limitationsimposed by second breakdown.

40

20

V CE , COLLECTOR–EMITTER VOLTAGE (VOLTS)

Figure 20.

M14–6/6

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo9.cn 版权所有 赣ICP备2023008801号-1

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务