双曲线的标准方程导学案
主备人: 审核人: 班组: 姓名:
3.1双曲线及其标准方程 导学案
【学习目标】1.了解双曲线的定义,图像和标准方程。
2.能用定义法或待定系数法求双曲线的标准方程。
3.能用坐标法解决一些与双曲有关的简单几何问题和实际问题。
【学习重点】双曲线的定义,求双曲线的标准方程。
【学习难点】推导双曲线的标准方程。
【使用说明与学法指导】
1.通过阅读教材,自主学习,思考,交流,讨论和概括,完成本节课的学习目标
2.用红笔勾勒出疑点,合作学习后寻求解决方案
3.带*号的为选做题。
【自主探究】
1.平面内到两个顶点 F1,F2___________________________的点的集合叫做双曲线,定点
F1,F2叫作_______,F1,F2之间的距离叫作_______。
2.双曲线的标准方程
焦点在X轴上的双曲线的标准方程为__________________________
焦点在Y轴上的双曲线的标准方程为__________________________
以上两个标准方程中a,b,c之间的关系是__________________________
【合作探究】
1. 知两点F1(5,0),F2(5,0),求与它们的距离的差的绝对值是6的点的轨迹。
1516),Q(,5)43两点的双曲线的标准方程。
2. 求经过点
P(3,x2y2123. m4m1表示交点在y轴的双曲线,求m的取值范围。
【巩固提高】
222x5y16,动圆M与定圆C、C都xy10x2401.已知定圆C1:,C2:12
2外切,求动圆圆心M的轨迹方程。
x22y10FPF90,F1PF2F1,F21242. 设为双曲线的两个焦点,点P在双曲线上且满足求
的面积
y2x133.过双曲线的左焦点F1,作倾斜角为6的弦AB,求:
2(1)AB__________; (2)F2AB的周长;(F2为双曲线的右焦点)
x2y219kk3★4. .判断方程表示的曲线。
y2x12★5.已知双曲线的方程为,试问:是否存在被B(1,1)平分的弦?如果存在,求
2出弦所在的直线方程;如果不存在,说明理由.
因篇幅问题不能全部显示,请点此查看更多更全内容