人教版八年级下册数学期末试卷及答案
12、,12 、错误!、错误!、40x2、x2y2中,最简二次根式有()个。
A、1 个 B、2 个 C、3 个 D、4个 2.若式子x2有意义,则x的取值范围为().
x3A、x≥2 B、x≠3 C、x≥2或x≠3 D、x≥2且x≠3
3.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )
111113,4,54,7,822 A.7,24,25 B.222 C.3,4, 5 D.
4、在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是( )
(A)AC=BD,AB∥CD,AB=CD (B)AD∥BC,∠A=∠C (C)AO=BO=CO=DO,AC⊥BD (D)AO=CO,BO=DO,AB=BC
5、如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AE于点F,则∠1=( )
AFD1BEC
A.40° B.50°C.60° D.80°
14x的图象相交于(-1,1),(2,2)两点.当y1y2时,x的取值336、表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数且mn≠0)图象是( ) 7.如图所示,函数y1x和y2范围是( )
y (-1, (2,2) O
x 221x1xx2xxnxn8、 在方差公式S2A.x<-1 B.-1<x<2 C.x>2 D. x<-1或x>2
中,下列说法不正确的是( )
2A. n是样本的容量B. 是样本个体C。 是样本平均数 D. S是样本方差
9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A)极差是47
(B)众数是42
(C)中位数是58
(D)每月阅读数量超过40的有4个月
1
本数9080706050403020100某班学生1~8月课外阅读数量 70折线统计图 5842837558AOD36112233284455667788月份BC(第8题)
10、如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为
AEF中点,则AM的最小值为【 】
F55A. B.
42ME56C.D.
35BCP二、填空题(本题共10小题,满分共30分)
30
11.48-+-3-32= 3(31)31
12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为( ) 13。 平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=cm.
14。在直角三角形ABC中,∠C=90°,CD是AB边上的中线,∠A=30°,AC=5 ,则△ADC的周长为_. 15、如图,平行四边形ABCD的两条对角线AC、BD相交于点O,AB= 5 ,AC=6,DB=8 则四边形ABCD是的周长为。
16。在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=.
17. 某一次函数的图象经过点(,3),且函数y随x的增大而减小,请你写出一个符合条件的函数解析式______________________.
18.)某市2007年5月份某一周的日最高气温(单位:℃)分别为:25,28,30,29,31,32,28,这周的日最高气温的平均值是_______
19。为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,方差分别为0。23,0.20,则成绩较为稳定的是 (选填“甲”或“乙)
20.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是 。
2
x22x19x9x21. (7分)已知,且为偶数,求(1x)的值 2x1x6x6ABC22。 (7分)在△ABC中,∠C=30°,AC=4cm,AB=3cm,求BC的长。
22. (9分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于点G,点E、F分别为
AG、CD的中点,连接DE、FG.
(1)求证:四边形DEGF是平行四边形;
(2)当点G是BC的中点时,求证:四边形DEGF是菱形.
23。 (9分) 小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180 m/min.设小亮出发x min后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.
⑴小亮行走的总路程是____________㎝,他途中休息了________min. ⑵①当50≤x≤80时,求y与x的函数关系式;
②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?
y/m 3000 1950 O (第22题)
30 50 80 x/min 25、(10分)如图,直线ykx6与x轴分别交于E、F.点E坐标为(-8,0),
点A的坐标为(—6,0).
(1)求k的值;(2)若点P(x,y)是第二象限内的直线上的一个动点,当点P运动过程中,试写出三角形OPA的面积s与x的函数关系式,并写出自变量x的取值范围;(3)探究:当P运动到什么位置时,三角形OPA的面积为
27,并说明理由. 8 y F E A O x 24。(10分)如图,△ABC中,点O是边AC上一个动点,过MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F. (1)求证:OE=OF;
3
O作直线
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
25。(6分)(2013·武汉中考)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.
26.(8分)(2013·宜昌中考)如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF。 (1)请你判断所画四边形的形状,并说明理由. (2)连接EF,若AE=8cm,∠A=60°,求线段EF的长。
27.(8分)(2013·昭通中考)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.
(1)求证:四边形AMDN是平行四边形.
(2)当AM为何值时,四边形AMDN是矩形?请说明理由.
28.(10分)(2013·株洲中考)某生物小组观察一植物生长,得到植物高度y(单位:cm)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行x轴).
(1)该植物从观察时起,多少天以后停止长高?
(2)求直线AC的解析式,并求该植物最高长多少厘米?
4
一、选择题
1.C 2。D 3.B 4。C 5。B 6.A 7。D 8.D 9.C 10.D 二、填空题
11。33, 12。17, 13.4 , 14. 1053, 15。20 , 16. 5, 17. 答案不唯一18.29,19. 21.解:由题意得9x0,x9x60,∴6x9
x6∵为偶数,∴x8。
(1x)x22x1(x1)2原式=x21(1x)(x1)(x1)(1x)x1xx1(1x)1x1
(1x)(x1)∴当x8时,原式=97=37 22。BC=523
23。 证明:(1)∵AG∥DC,AD∥BC,∴四边形AGCD是平行四边形, ∴AG=DC,∵E、F分别为AG、DC的中点,∴GE=AG,DF=DC, 即GE=DF,GE∥DF,∴四边形DEGF是平行四边形;
(2)连接DG,∵四边形AGCD是平行四边形, ∴AD=CG,∵G为BC中点, ∴BG=CG=AD,∵AD∥BG, ∴四边形ABGD是平行四边形, ∴AB∥DG, ∵∠B=90°,
∴∠DGC=∠B=90°, ∵F为CD中点, ∴GF=DF=CF, 即GF=DF,
∵四边形DEGF是平行四边形, ∴四边形DEGF是菱形. 24。 解:⑴3600,20.
5
20. (3)n1. 乙,
⑵①当50x80时,设y与x的函数关系式为ykxb. 根据题意,当x50时,y1950;当x80,y3600.
所以,与的函数关系式为y55x800.
②缆车到山顶的路线长为3600÷2=1800(),
缆车到达终点所需时间为1800÷180=10(min).
小颖到达缆车终点时,小亮行走的时间为10+50=60(min). 把x60代入y55x800,得y=55×60—800=2500.
所以,当小颖到达缆车终点时,小亮离缆车终点的路程是3600-2500=1100()
3913925。(1)k;(2)sx18(—8<<0);(3)P(,)
442826。
27。解(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
答: ∴∠2=∠5,4=∠6,
∵MN∥BC,
∴∠1=∠5,3=∠6, ∴∠1=∠2,∠3=∠4, ∴EO=CO,FO=CO, ∴OE=OF;
(2)解:∵∠2=∠5,∠4=∠6, ∴∠2+∠4=∠5+∠6=90°, ∵CE=12,CF=5,
∴EF=
=13,
∴OC=EF=6。5;
(3)答:当点O在边AC上运动到AC中点时,四边形AECF是矩形. 证明:当O为AC的中点时,AO=CO, ∵EO=FO,
∴四边形AECF是平行四边形, ∵∠ECF=90°,
∴平行四边形AECF是矩形.
6
7
因篇幅问题不能全部显示,请点此查看更多更全内容