光面爆破(隧洞)
一、工程概况 1、地理位置
济南至莱芜高速公路长城岭隧道进口位于章丘市文祖镇三槐树村,出口位于莱芜市雪野镇大厂村。施工现场周围无大型建筑物,仅有少量的民用建筑。长城岭隧道中间处LK40+740里程地表处有与隧道中心线几乎垂直的古齐长城,是重点保护对象。 2、工程简况
长城岭隧道全长左幅854(右幅759)米,合计1613米,开挖断面达165m2。其中左幅Ⅲ级围岩160米,Ⅳ级围岩480米,Ⅴ级围岩214米;右幅Ⅲ级围岩145米,Ⅳ级围岩371米,Ⅴ级围岩243米,隧道爆破方量约为247454m3。洞口路基段长170米,挖方段主要为隧道洞口处,约18248m3。 3、长城岭隧道开挖施工方法
长城岭隧道Ⅳ级围岩及Ⅴ级围岩段采用单侧壁导坑法开挖,开挖进尺控制在0.75~1.0m以内,弱爆破技术,小型挖掘机装渣,小型拖拉机运输至洞口处,再由装载机配合大型载重自卸车运输至弃渣场。Ⅲ级围岩采用台阶开挖法进行,光面控制爆破及减震爆破技术。上台阶采用小型挖掘机扒渣至下台阶,再由装载机配合大型载重自卸车运输至弃渣场。爆破进尺控制在1.5米以内。 4、洞外路基施工方法
土方路基挖方地段直接采用大型挖掘机进行挖除,石方地段采用自上而下松动控制爆破,并采取防护措施。出渣由挖掘机挖装,载重自卸车运输至弃渣场。 5、水文地质概况
隧道岩体以灰岩为主,岩石较坚硬,节理裂隙发育。挖方路基石方地段岩石为强风化~弱风化的灰岩,岩体破碎,完整性差。线路范围的水文地质条件简单,属裂隙水。 6、爆破要求
(1)长城岭隧道中部穿过古齐长城,爆破施工时对文物保护要求较高。隧道在爆破开挖时,允许控制在0.2cm/s以内。
(2)洞口周围的民用砖房采用爆破振动安全标准为2cm/s以内。
(3)对于露天控制爆破个别飞石的警戒距离不小于300m,个别飞石最大距离控制在45m以内。
(4)爆破环境技术要求详见《图1 爆破环境平面布置图》。 (5)爆破工程量计算
工 程 项 目 名 称 长(高)×宽(米) 断面积(m2) 深(长)度(m) 爆破方量(m3)
Ⅳ、Ⅴ级围岩 上导坑(单侧) 6.5×9.41 45.4 1308 118766 下导坑(单侧) 4.9×7.78 37.5 1308 98100
Ⅲ级围岩 上台阶 5.2×15.97 41.59 305 12685 下台阶 3.5×16.04 58.7 305 17903 洞外路基 18248 合 计 265702 二、爆破方案选择 1.设计依据
(1)济莱高速公路第六合同段施工第一册《总体设计 路线 路基 路面 桥涵 交叉其它》、第二分册《隧道》;
(2)中华人民共和国爆破安全规程(GB6722-2003); (3)公安部《爆破作业人员安全技术考核标准》;
(4)中铁隧道集团在以往施工的类似本工程的成功经验和资料。 2.爆破方案选择
(1) 根据围岩特点合理选择周边眼间距及周边眼的最小抵抗线,辅助炮眼交错均匀布置,周边炮眼与辅助炮眼眼底在同一垂直面上,掏槽炮眼加深20cm。 (2) 严格控制周边眼的装药量,采用间隔装药,使药量沿炮眼全长均匀分布,导爆索起爆。
(3路堑边坡石方开挖采用松动控制爆破,自上而下分层、分段进行,并用砂袋及钢丝网覆盖。 3.爆破器材选用
根据施工中常用爆破器材,选用以下火工品作为长城岭隧道施工的爆破器材。 爆破器材名称 规 格 用 途 雷管 火雷管(8#) 起爆
1~15段非电毫秒雷管 掘进和传爆
炸药 乳化炸药爆速3800~4000m/s直径φ32mm 掘 进 2#岩石小药卷,直径25mm 起爆、预裂 传爆线 导火索 起 爆 6600m/s导爆索 起爆、预裂
三、爆破参数的选择与装药量计算 1.爆破参数的选择
(1)孔深确定:Ⅳ、Ⅴ级围岩取1~0.75m,Ⅲ级围岩取1.5m,
(2)周边光爆孔或预裂孔孔网确定:根据a/w=0.7~1.0原则确定,一般a=45~60cm,取50cm;w=50~80cm,取60cm。
(3)周边眼线装药密度确定: q线在硬岩段一般取200~350g/m;本段岩石属Ⅲ-Ⅴ级,q线=250g/m。 (4)掘进孔孔网参数确定:
掘进孔孔网根据单孔装药量负担面积确定: a.w=S=Q单/q.l 。
Q单一单孔装药量 q一单耗 l一孔深 a一孔距 w 一抵抗线 S一炮孔负担面积 (5)单耗确定: 单耗根据类似经验确定,Ⅲ、Ⅳ、Ⅴ级围岩周边眼取0.25kg/m、断面开挖取0.5~1.94kg/m3。 (6)掏槽孔确定:
①楔形掏槽采用六孔掏槽。
②直眼掏槽采用五孔掏槽。其中间孔为空孔,一般不装药,为确保掏槽抛碴,可在底部少量装药,最后起爆抛槽渣。 四. 钻爆设计
1.Ⅴ级围岩钻爆详见图《图2 Ⅴ级围岩及浅埋段爆破设计图》; 2. Ⅳ级围岩钻爆详见图《图3 Ⅳ级围岩爆破设计图》; 3. Ⅲ级围岩钻爆详见图《图4 Ⅲ级围岩爆破设计图》; 五. 药量计算、装药方法、装药结构及炮孔堵塞. 1.药量计算
见爆破设计图。 2.装药方法
采用人工用木制炮棍装药,起爆体均在火工品加工房进行加工,起爆体必须专人加工,分段存放。 3.装药结构
周边眼采用光面或预裂爆破,装药结构为间隔装药;掏槽孔和掘进孔、底板孔采用连续装药结构。 4. 炮孔堵塞:
炮孔采用人工堵塞,堵塞材料为粘性土卷(需提前加工),用木制炮棍压紧。堵塞长度一般不小于25~30厘米;严禁不堵孔爆破。 六.网络设计及起爆方法
1. 起爆网络采用并簇连法,按如下顺序连接:
孔内雷管分组→周边孔导爆索并接→同段非电雷管双发簇连→双发火雷管起爆。
路基爆破起爆:主爆孔并接→同段非电雷管双发簇连→双发火雷管起爆。 2.起爆器材:
孔内采用非电毫秒雷管和导爆索(周边孔)起爆,孔外采用非电毫秒雷管传爆,起爆采用双发火雷管起爆,导火索长度不小于1.5m。 3.起爆方法:
警戒完成后,人工利用香火点燃导火索(2根),立即跑到200m以外安全避炮点。在完成爆破后30min后进入爆区检查,确认无盲炮后方可解除警戒。
七. 爆破安全距离计算
由于爆破过程中部分炸药能量转化为地震波,同时产生一定飞石、冲击波、爆破毒气和噪声,影响建筑物、机械设备及生命财产的安全,务必对其安全情况进行校验,采取严格的防范措施加以保护确定爆破安全。 1. 爆破振动计算:
(1)长城岭隧道控制最大段装药量为,Qmax=0.7kg。 V=k(Q1/3/R)a 取 k=50 a=1.3 R=65M时。 V=50×(0.71/3/65)1.5=0.18cm/s<0.2cm/s(古齐长城场交通隧道安全振动速度) 。 2. 爆破冲击波超压的影响:
由于隧道施工方向为水平,而隧道洞室爆破均在地下,因此超压冲击波对洞口周围建筑不会造成影响。 3、爆破安全距离:
A: 隧道爆破时,个别飞石对人员安全距离设定为150m,巷道内对设备安全距离设定为100m(指非机动设备)。
B: 路基爆破时,个别飞石对人员安全距离设定为300m以外,同时加强警戒。 4.起爆顺序和延期时间: (1)起爆顺序:
隧道内:掏槽眼→掘进眼→内圈眼→周边眼。 掏槽眼→掘进眼→内圈眼→周边眼。
(2)延期时间:一般掏槽孔段间延时差为50ms~75ms。 八. 安全技术与防护措施.
1、工程现场100m范围内进行实地调查,记录可能影响的构筑物或其它结构状态,记录资料应包括文字和图片资料,现场可作观测标志。 2. 必要时可进行地表震动观测,以优化爆破设计。 3. 爆堆检查时间:
爆堆检查时间应在爆后30min且炮烟排出后,由熟练爆破员进行检查。 4. 盲炮处理:
由于采用炸药均为乳化炸药,因此发生盲炮后,必须由专职爆破员进行处理。处理方法为:
⑴. 能够重新引爆的,加大警戒范围,重新加入起爆体引爆;
⑵不能重新引爆的炮孔,采用高压风吹出堵塞炮渣,取出起爆雷管,并将炸药取出;⑶.严禁采用木棍硬捣起爆药卷。
5. 严禁利用残眼穿孔,以免钻爆残眼中残留炸药。
6. 爆破警戒:装药警戒范围由爆破工作领导人确定,装药时应在警戒边界设置明显标志并派出岗哨;执行警戒任务的人员,应按指令到达指定地点并坚守工作岗位。
7. 信号:预警信号:该信号发出后爆破警戒范围内开始清场工作;起爆信号:起爆信号应在确认人员、设备等全部撤离爆破警戒区,所有警戒人员到位,具备安全起爆条件时发出。起爆信号发出后,准许负责起爆的人员起爆;解除信号:安全等待时间过后,检查人员进入爆破警戒范围内检查、确认安全后,方可发出解除爆破警戒信号。在此之前,岗哨不得撤离,不允许非检查人员进入爆破警戒范围;各类信号均应使爆破警戒区域及附近人员能清楚地听到或看到。
8. 火工品管理必须有火工品管理人员进行管理,现场火工品使用由爆破员使用,安全员现场监督。爆破完成后,剩余火工品必须全部退库,做到帐账相符,账物相符。
何谓光面爆破技术?光面爆破技术分为几种类型? 光面爆破技术的优缺点各是什么?
光面爆破技术约在1950年发源于瑞典,1952年在加拿大首次应用;预裂爆破由光面爆破演变而来。从整个爆破技术来分,它们均属于光面爆破技术。 光面爆破是一种控制岩体开挖轮廓的爆破技术,是通过一系列措施对开挖工程周边部位实行正确的钻孔和爆破,并使周边眼最后起爆的爆破技术。预裂爆破则是周边眼最先起爆,线装药密度适当地比光面爆破大一些,周边眼间距则适当地小一些。
光面爆破可以分为三大类型: (1) 轮廓线钻眼法
它是沿设计的隧道开挖轮廓线钻凿紧密相邻的炮眼,这些炮眼内不装炸药,然后视其离自由面的远近再钻一至若干排炮眼并装炸药爆破。由于密集且相邻的
炮眼存在,隔开了其它炮眼爆炸时爆炸应力波和裂缝的传递与扩展,使岩体沿弱面切开,形成平整的岩壁保护岩体稳定。
目前在隧道内使用较少,仅在不够稳定的岩层(如软弱岩层、断层带等)中及城市地下隧道、地铁为减轻地震动时,才部分采用,应用该种技术能获得较好的光面爆破效果,但钻眼工作量大,钻眼费用高。 (2) 预裂爆破法
这种方法是在开挖轮廓线上钻凿相互平行较密集的炮眼,装炸药并使之先于其它爆破眼起爆,当轮廓线上的炮眼间距、数量、装药结构合适时,爆破后各炮眼间将形成相互贯通的裂隙,与原岩分割开来。此后再爆破其它炮眼,由于轮廓线上裂缝已形成,所以其它炮眼爆破时不会引起围岩岩体破坏,而构成光滑的平整壁面。预裂爆破可以起到较好的隔振作用,一般适用于岩体较为完整的硬岩、中硬岩中深眼及深眼爆破。 (3) 光面爆破法
它与预裂爆破法恰好相反,轮廓线上的炮眼(周边眼)是在其它炮眼爆破后最后起爆,是软岩、中硬岩隧道浅眼爆破施工中广泛应用的方法。与预裂爆破法比较,周边轮廓线上炮眼数较少。根据断面不同,施工方法可分为光面层光面爆破法和全断面一次爆破光面爆破法。 光面爆破技术的优缺点 (1) 优点
1 隧道围岩不产生或很少产生炮震裂缝,保持了围岩完整性,从而增大了围岩自身的承载能力,这为采用锚喷支护创造了有利的条件。光面爆破技术和锚喷技术相结合,进一步增强了锚喷支护的作用,特别是在松软岩层中更能显示这一特点。
2 在裂隙发育的地层中,避免裂隙扩大和产生新的裂缝,提高了围岩的稳定性,能基本清除落石伤人事故,为快速施工提供了有利条件。
3 隧道成型规整,极大地减少了掘进超挖数量和出碴工作量,加快了掘进速度,节省了衬砌材料,提高了施工进度。
4 由于隧道成型规整,凹凸很少,除增强隧道本身稳定性外,也减少了隧道的维护量,在有瓦斯的隧道则不易于产生瓦斯局部聚集。 (2) 缺点
1 炮眼数较一般爆破法要多一些,钻眼的准确性要求较高,钻爆作业的单项工序时间要多一些。
2 需要一些特殊器材,如专用炸药、毫秒雷管、导爆索(传爆线)等。
光面爆破
光面爆破是先爆除主体开挖部位的岩体,然后再起爆布置在设计轮廓线
上的周边孔药包,将光爆层炸除,形成一个平整的开挖面,是通过正确选择爆破参数和合理的施工方法,达到爆后壁面平整规则、轮廓线符合设计要求的一种控制爆破技术。隧道全断开挖光面爆破,是应用光面爆破技术,对隧道实施全断面一次开挖的一种施工方法。它与传统的爆破法相比,最显著的优点是能有效地控制周边眼炸药的爆破作用,从而减少对围岩的扰
动,保持围岩的稳定,确保施工安全,同时,又能减少超、欠挖,提高工程质量和进度。
一、 光面爆破作用原理
光面爆破的破岩机理是一个十分复杂的问题,目前仍在探索之中。尽管在理论上还不甚成熟,但在定性分析方面已有共识。一般认为,炸药起爆时,对岩体产生两种效应;二是爆炸气体膨胀做功所起的作用。光面爆破是周边眼同时起爆,各炮眼的冲击波向其四周作径向传播,相邻炮眼的冲击相遇,则产生应力波的叠加,并产生切向拉力,拉力的最大值发生在相邻炮眼中心连线的中点,当岩体的极限抗拉强度小于此拉力时,岩体便被拉裂,在炮眼中心连线上形成裂缝,随后,爆炸气的膨胀合裂缝进一步扩展,形成平整的爆裂面。
二、 光面爆破的技术要点
要使光面爆破取得良好效果,一般需掌握以下技术要点:
1、 根据围岩特点,合理选定周边眼的间距和最小抵抗线,尽最大努力提高钻眼质量。
2、 严格控制周边眼的装药量,尽可能将药量沿眼长均匀分布。 3、 周边眼宜使用小直径药卷和低猛度、低爆速的炸药。为满足装结构要求,可借助导爆索(传爆线)来实现空气间隔装药。
4、 采用毫秒微差有序起爆。要安排好开挖程序,使光面爆破具有良好的临空面。
5、边孔直径小于等于50mm。 三、预裂爆破和光面爆破
为保证保留岩体按设计轮廓面成型并防止围岩破坏,须采用轮廓控制爆破技术。常用的轮廓控制爆破技术包括预裂爆破和光面爆破。所谓预裂爆破,就是首先起爆布置在设计轮廓线上的预裂爆破孔药包,形成一条沿设计轮廓线贯穿的裂缝,再在该人工裂缝的屏蔽下进行主体开挖部位的爆破,保证保留岩体免遭破坏;光面爆破是先爆除主体开挖部位的岩体,然后再起爆布置在设计轮廓线上的周边孔药包,将光爆层炸除,形成一个平整的开挖面。
预裂爆破和光面爆破在坝基、边坡和地下洞室岩体开挖中获得了广泛应用。
(一)成缝机理
预裂爆破和光面爆破都要求沿设计轮廓产生规整的爆生裂缝面,两者成缝机理基本一致。现以预裂缝为例论述它们的成缝机理。
预裂爆破采用不耦合装药结构,其特征是药包和孔壁间有环状空气间隔层,该空气间隔层的存在削减了作用在孔壁上的爆炸压力峰值。因为岩石动抗压强度远大于抗拉强度,因此可以控制削减后的爆压不致使孔壁产生明显的压缩破坏,但切向拉应力能使炮孔四周产生径向裂纹。加之孔与
孔间彼此的聚能作用,使孔间连线产生应力集中,孔壁连线上的初始裂纹进一步发展,而滞后的高压气体的准静态作用,使沿缝产生气刃劈裂作用,使周边孔间连线上的裂纹全部贯通成缝。 (二)质量控制标准
1)开挖壁面岩石的完整性用岩壁上炮孔痕迹率来衡量,炮孔痕迹率也称半孔率,为开挖壁面上的炮孔痕迹总长与炮孔总长的百分比率。在水电部门,对节理裂隙极发育的岩体,一般应使炮孔痕迹率达到10%~50%;节理裂隙中等发育者应达50%~80%;节理裂隙不发育者应达80%以上。围岩壁面不应有明显的爆生裂隙。
2)围岩壁面不平整度(又称起伏差)的允许值为±15cm。 3)在临空面上,预裂缝宽度一般不宜小于1cm。实践表明,对软岩(如葛洲坝工程的粉砂岩),预裂缝宽度可达2cm以上,而且只有达到2cm以上时,才能起到有效的隔震作用;但对坚硬岩石,预裂缝宽度难以达到1cm。东江工程的花岗岩预裂缝宽仅6 m m,仍可起到有效隔震作用。地下工程预裂缝宽度比露天工程小得多,一般仅达0.3~0.5cm。因此,预裂缝的宽度标准与岩性及工程部位有关,应通过现场试验最终确定。
影响轮廓爆破质量的因素,除爆破参数外,主要依赖于地质条件和钻孔精度。这是因为爆生裂缝极易沿岩体原生裂隙、节理发展,而钻孔精度则是保证周边控爆质量的先决条件。 (三)参数设计
预裂爆破和光面爆破的参数设计一般采用工程类比法,并通过现场试验最终确定。
(1) 预裂爆破参数
1)孔径 明挖工程为7 0~165mm;隧洞开挖为40~90mm;大型地下厂房为50~110mm。
2)孔距 与岩石特性、炸药性质、装药情况、开挖壁面平整度要求和孔径大小有关。孔距一般为孔径的7~12倍。爆破质量要求高、岩质软弱、裂隙发育者取小值。
3)装药不偶合系数 不偶合系数指炮孔半径与药卷半径的比值,为防止炮孔壁的破坏,该值一般取2~5。
4)线装药密度 线装药密度是单位长度炮孔的平均装药量。影响预裂爆破参数的因素复杂,很难从理论上推导出严格的计算公式,以经验公式为主,目前国内较常用公式的基本形式为
式中,QX—预裂爆破的线装药密度,kg/m; σC—岩石的极限抗压强度,MPa; a—炮孔间距,m; d—钻孔直径,mm;
K、α、β和γ—经验系数。
随岩性不同,预裂爆破的线装药密度一般为200~500g/m。为克服岩石对孔底的夹制作用,孔底段应加大线装药密度到2~5倍。 (2) 光面爆破参数
1)光面爆破层厚度 即最小抵抗线的大小,一般为炮孔直径的10~20倍,岩质软弱、裂隙发育者取小值。
2)孔距 一般为光面爆破层厚度的0.75~0.90倍,岩质软弱、裂隙发育者取小值。
3)钻孔直径及装药不偶合系数 参照预裂爆破选用。 4)线装药密度Qx 一般按照松动爆破药量计算公式确定 式中q—松动爆破单耗,kg/m; a—光面爆破孔间距,m;
W—光面爆破层厚度,m。 (四)装药结构与起爆 (1) 装药结构
1)堵塞段 堵塞段的作用是延长爆生气体的作用时间,且保证孔口段只产生裂缝而不出现爆破漏斗,对深孔爆破该段长一般取0.5~1.5m。 2)孔底加强段 段长大体等于堵塞段。由于孔底受岩石夹持作用,故需用较大的线装药密度。
3)均匀装药段 该段一般为轴向间隔不偶合装药,并要求沿孔轴线方向均匀分布。轴向间隔装药须用导爆索串联各药卷起爆。为保证孔壁不被粉碎,药卷应尽量置于孔的中心。国外一般用炮孔中心定位器定位,国内一般是将药卷及导爆索绑于竹片进行药卷定位。 (2) 起爆
为保证同时起爆,预裂爆破和光面爆破一般都用导爆索起爆,并通常采用分段并联法。
由于光面爆破孔是最后起爆,导爆索有可能遭受超前破坏。为保证周边孔准爆,对光面爆破孔可采用高段延期雷管与导爆索的双重起爆法。预裂孔若与主爆区炮孔组成同一网路起爆,则预裂孔应超前第一排主爆孔75~100ms起爆。v
因篇幅问题不能全部显示,请点此查看更多更全内容