您好,欢迎来到化拓教育网。
搜索
您的当前位置:首页文档:名词解释(4)

文档:名词解释(4)

来源:化拓教育网


名词解释

蛋白质

两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。

必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。

氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH值,用符号pI表示。

稀有氨基酸:指存在于蛋白质中的20种常见氨基酸以外的其它罕见氨基酸,它们是正常氨基酸的衍生物。

非蛋白质氨基酸:指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体的各种组织和细胞的氨基酸。

构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。

蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。

构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空

模板资料 资源共享

间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。

蛋白质的二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。

结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对的近似球形的组装体。

蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。

氢键:指负电性很强的氧原子或氮原子与N-H或O-H的氢原子间的相互吸引力。

蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。

离子键:带相反电荷的基团之间的静电引力,也称为静电键或盐键。

超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则的、在空间上能辨认的二级结构组合体。

疏水键:非极性分子之间的一种弱的、非共价的相互作用。如蛋白质分子中的疏水侧链避开水相而相互聚集而形成的作用力。

盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解度降低

模板资料 资源共享

并沉淀析出的现象称为盐析。

蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。

蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象。

蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其所带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作用。

凝胶电泳:以凝胶为介质,在电场作用下分离蛋白质或核酸等分子的分离纯化技术。

核酸

单核苷酸:核苷与磷酸缩合生成的磷酸酯称为单核苷酸。

磷酸二酯键:单核苷酸中,核苷的戊糖与磷酸的羟基之间形成的磷酸酯键。

DNA双螺旋结构:DNA分子是由两条围绕同一中心轴且反向平行缠绕的多聚脱氧核苷酸链形成的一个右手螺旋结构,由脱氧核糖和磷酸酯基团相间连接形成的亲水主链位于螺旋外侧,而疏水性的碱基位于内侧。

碱基互补规律:在形成双螺旋结构的过程中,由于各种碱基的大小与结构的不同,使得碱基之间的互补配对只能在G…C(或C…G)和A…T(或T…A)之间进行,这种碱基配

模板资料 资源共享

对的规律就称为碱基配对规律(互补规律)。

反密码子:在tRNA链上有三个特定的碱基,组成一个密码子,由这些反密码子按碱基配对原则识别mRNA链上的密码子。反密码子与密码子的方向相反。

顺反子:基因功能的单位;一段染色体,它是一种多肽链的密码;一种结构基因。

核酸的变性、复性:当呈双螺旋结构的DNA溶液缓慢加热时,其中的氢键便断开,双链DNA便脱解为单链,这叫做核酸的“溶解”或变性。在适宜的温度下,分散开的两条DNA链可以完全重新结合成和原来一样的双股螺旋。这个DNA螺旋的重组过程称为“复性”。

退火:当将双股链呈分散状态的DNA溶液缓慢冷却时,它们可以发生不同程度的重新结合而形成双链螺旋结构,这现象称为“退火”。

增色效应:当DNA从双螺旋结构变为单链的无规则卷曲状态时,它在260nm处的吸收便增加,这叫“增色效应”。

减色效应:DNA在260nm处的光密度比在DNA分子中的各个碱基在260nm处吸收的光密度的总和小得多(约少35%~40%), 这现象称为“减色效应”。

发夹结构(hairpin structure):RNA是单链线形分子,只有局部区域为双链结构。这些结构是由于RNA单链分子通过自身回折使得互补的碱基对相遇,形成氢键结合而成的,称为发夹结构。

DNA的熔解温度(Tm值):引起DNA发生“熔解”的温度变化范围只不过几度,这

模板资料 资源共享

个温度变化范围的中点称为熔解温度(Tm)。

结合酶类:除酶蛋白外还含有非蛋白质成分---辅助因子的一类酶,酶蛋白与辅助因子单独存在均无酶活性。又称为全酶或复合酶类。

多酶体系:由几个酶彼此嵌合形成的复合体称为多酶体系。多酶复合体有利于细胞中一系列反应的连续进行,以提高酶的催化效率,同时便于机体对酶的。多酶复合体的分子量都在几百万以上。

米氏常数(Km值):用Km值表示,是酶的一个重要参数。Km值是酶反应速度(V)达到最大反应速度(Vmax)一半时底物的浓度(单位M或mM)。米氏常数是酶的特征常数,只与酶的性质有关,不受底物浓度和酶浓度的影响。

同工酶:是指有机体内能够催化同一种化学反应,但其酶蛋白本身的分子结构组成却有所不同的一组酶。

酶的比活力:比活力是指每毫克蛋白质所具有的活力单位数,可以用下式表示:

比活力=活力单位数/蛋白质量(mg)

活性中心:酶分子中直接与底物结合,并催化底物发生化学反应的部位,称为酶的活性中心。

竞争性抑制作用:抑制剂与底物共同竞争与酶的活性中心部位结合,从而阻碍底物与

模板资料 资源共享

酶的结合,这种抑制作用称为竞争性抑制作用。

非竞争性抑制作用:酶可以同时与底物和抑制剂相结合,两者无竞争作用,但形成的酶-底物-抑制剂三元复合物不能转变成产物。

变构酶:或称别构酶,是代谢过程中的关键酶,它的催化活性受其三维结构中的构象变化的调节。

共价调节酶:除了别构效应外,某些酶可以在其他酶的作用下,通过共价修饰来,使其在高活性形式和相对较低的活性形式之间相互转换。磷酸化作用是最常见的共价修饰调节类型。

酶活力:又称酶活性,是指酶催化一定的化学反应的能力,其大小可用在一定的条件下,酶催化某一化学反应的反应速度来表示。

维生素

TPP:硫胺素(维生素B1)在体内以焦磷酸硫胺素(TPP)形式存在。

FAD(黄素-腺嘌呤二核苷酸)和FMN(黄素单核苷酸)是核黄素(维生素B2)的衍生物。

泛酸是自然界中分布十分广泛的维生素,故又名遍多酸,是维生素B3,它是辅酶A(CoA)的主要成分。CoA分子的巯基可与酰基形成硫酯键。

维生素PP又称烟酸,在体内主要以烟酰胺形式存在,烟酰胺在体内主要构成辅酶I (NAD,烟酰胺腺嘌呤二核苷酸)和辅酶II(NADP,烟酰胺腺嘌呤二核苷酸磷酸)。氧化

模板资料 资源共享

型:NAD+,NADP+。还原型:NADH+H,NADPH+H。

叶酸和四氢叶酸(FH4或THFA),四氢叶酸是合成酶的辅酶,其前体是叶酸。

生物氧化

生物氧化:生物体内有机物质氧化而产生大量能量的过程称为生物氧化。生物氧化在细胞内进行,氧化过程消耗氧放出二氧化碳和水,所以有时也称之为“细胞呼吸”或“细胞氧化”。生物氧化包括:有机碳氧化变成CO2;底物氧化脱氢、氢及电子通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2和H2O的同时,释放的能量使ADP转变成ATP。

呼吸链:有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺序的传递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链或电子传递链。电子在逐步的传递过程中释放出能量被用于合成ATP,以作为生物体的能量来源。

氧化磷酸化:在底物脱氢被氧化时,电子或氢原子在呼吸链上的传递过程中伴随ADP磷酸化生成ATP的作用,称为氧化磷酸化。氧化磷酸化是生物体内的糖、脂肪、蛋白质氧化分解合成ATP的主要方式。

磷氧比:电子经过呼吸链的传递作用最终与氧结合生成水,在此过程中所释放的能量用于ADP磷酸化生成ATP。经此过程消耗一个原子的氧所要消耗的无机磷酸的分子数(也是生成ATP的分子数)称为磷氧比值(P/O)。如NADH的磷氧比值是3,FADH2的磷氧比值是2。

模板资料 资源共享

底物水平磷酸化:在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键(或高能硫酯键),由此高能键提供能量使ADP(或GDP)磷酸化生成ATP(或GTP)的过程称为底物水平磷酸化。此过程与呼吸链的作用无关,以底物水平磷酸化方式只产生少量ATP。如在糖酵解(EMP)的过程中,3-磷酸甘油醛脱氢后产生的1,3-二磷酸甘油酸,在磷酸甘油激酶催化下形成ATP的反应,以及在2-磷酸甘油酸脱水后产生的磷酸烯醇式丙酮酸,在丙酮酸激酶催化形成ATP的反应均属底物水平的磷酸化反应。另外,在三羧酸环(TCA)中,也有一步反应属底物水平磷酸化反应,如α-酮戊二酸经氧化脱羧后生成高能化合物琥珀酰~CoA,其高能硫酯键在琥珀酰CoA合成酶的催化下转移给GDP生成GTP。然后在核苷二磷酸激酶作用下,GTP又将末端的高能磷酸根转给ADP生成ATP。

能荷:能荷是细胞中高能磷酸状态的一种数量上的衡量,能荷大小可以说明生物体中ATP-ADP-AMP系统的能量状态。

糖代谢

糖异生:非糖物质(如丙酮酸 乳酸 甘油 生糖氨基酸等)转变为葡萄糖的过程。

Q酶:Q酶是参与支链淀粉合成的酶。功能是在直链淀粉分子上催化合成 (α-1, 6)糖苷键,形成支链淀粉。

乳酸循环乳:酸循环是指肌肉缺氧时产生大量乳酸,大部分经血液运到肝脏,通过糖异生作用肝糖原或葡萄糖补充血糖,血糖可再被肌肉利用,这样形成的循环称乳酸循环。

发酵:厌氧有机体把糖酵解生成NADH中的氢交给丙酮酸脱羧后的产物乙醛,使之生成乙醇的过程称之为酒精发酵。如果将氢交给病酮酸丙生成乳酸则叫乳酸发酵。

模板资料 资源共享

变构调节:变构调节是指某些调节物能与酶的调节部位结合使酶分子的构象发生改变,从而改变酶的活性,称酶的变构调节。

糖酵解途径:糖酵解途径指糖原或葡萄糖分子分解至生成丙酮酸的阶段,是体内糖代谢最主要途径。

糖的有氧氧化:糖的有氧氧化指葡萄糖或糖原在有氧条件下氧化成水和二氧化碳的过程。是糖氧化的主要方式。

肝糖原分解:肝糖原分解指肝糖原分解为葡萄糖的过程。

磷酸戊糖途径:磷酸戊糖途径指机体某些组织(如肝、脂肪组织等)以6-磷酸葡萄糖为起始物在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸进而代谢生成磷酸戊糖为中间代谢物的过程,又称为磷酸已糖旁路。

D-酶:一种糖苷转移酶,作用于α-1,4糖苷键,将一个麦芽多糖的片段转移到葡萄糖、麦芽糖或其它多糖上。

糖核苷酸:单糖与核苷酸通过磷酸酯键结合的化合物,是双糖和多糖合成中单糖的活化形式与供体。

脂代谢

必需脂肪酸:为人体生长所必需但有不能自身合成,必须从事物中摄取的脂肪酸。在脂肪中有三种脂肪酸是人体所必需的,即亚油酸,亚麻酸,花生四烯酸。

模板资料 资源共享

α-氧化:α-氧化作用是以具有3-18碳原子的游离脂肪酸作为底物,有分子氧间接参与,经脂肪酸过氧化物酶催化作用,由α碳原子开始氧化,氧化产物是D-α-羟脂肪酸或少一个碳原子的脂肪酸。

脂肪酸的β-氧化:脂肪酸的β-氧化作用是脂肪酸在一系列酶的作用下,在α碳原子和β碳原子之间断裂,β碳原子氧化成羧基生成含2个碳原子的乙酰CoA和比原来少2个碳原子的脂肪酸。

脂肪酸ω-氧化:ω-氧化是C5、C6、C10、C12脂肪酸在远离羧基的烷基末端碳原子被氧化成羟基,再进一步氧化而成为羧基,生成α,ω-二羧酸的过程。

乙醛酸循环:一种被修改的柠檬酸循环,在其异柠檬酸和苹果酸之间反应顺序有改变,以及乙酸是用作能量和中间物的一个来源。某些植物和微生物体内有此循环,他需要二分子乙酰辅酶A的参与;并导致一分子琥珀酸的合成。

柠檬酸穿梭:就是线粒体内的乙酰CoA与草酰乙酸缩合成柠檬酸,然后经内膜上的三羧酸载体运至胞液中,在柠檬酸裂解酶催化下,需消耗ATP将柠檬酸裂解回草酰乙酸和,后者就可用于脂肪酸合成,而草酰乙酸经还原后再氧化脱羧成丙酮酸,丙酮酸经内膜载体运回线粒体,在丙酮酸羧化酶作用下重新生成草酰乙酸,这样就可又一次参与转运乙酰CoA的循环。

乙酰CoA羧化酶系:大肠杆菌乙酰CoA羧化酶含生物素羧化酶、生物素羧基载体蛋白(BCCP)和转羧基酶三种组份,它们共同作用催化乙酰CoA的羧化反应,生成丙二酸单酰-CoA。

模板资料 资源共享

脂肪酸合酶系统:脂肪酸合酶系统包括酰基载体蛋白(ACP)和6种酶,它们分别是:乙酰转酰酶;丙二酸单酰转酰酶;β-酮脂酰ACP合成酶;β-酮脂酰ACP还原酶;β-羟;脂酰ACP脱水酶;烯脂酰ACP还原酶。

核酸的合成

半保留复制:双链DNA的复制方式,其中亲代链分离,每一子代DNA分子由一条亲代链和一条新合成的链组成。

转录:以DNA为模板,指导合成RNA的过程,意即把DNA的碱基序列抄录成RNA的碱基序列。这种遗传信息的转移称为转录。

不对称转录:转录通常只在DNA的任一条链上进行,这称为不对称转录。

逆转录:Temin和Baltimore各自发现在RNA肿瘤病毒中含有RNA指导的DNA聚合酶,才证明发生逆向转录,即以RNA为模板合成DNA。

冈崎片段:一组短的DNA片段,是在DNA复制的起始阶段产生的,随后又被连接酶连接形成较长的片段。在大肠杆菌生长期间,将细胞短时间地暴露在氚标记的胸腺嘧啶中,就可证明冈崎片段的存在。冈崎片段的发现为DNA复制的科恩伯格机理提供了依据。

复制叉:复制 DNA分子的 Y形区域。在此区域发生链的分离及新链的合成。

随后链:已知的DNA聚合酶不能催化DNA链朝3/→5/方向延长,在两条亲代链起点的3/ 端一侧的DNA链复制是不连续的,而分为多个片段,每段是朝5/→3/方向进行,所以随后链是不连续的。

模板资料 资源共享

有意义链:即华森链,华森——克里格型DNA中,在体内被转录的那股DNA链。简写为W strand。

内含子:真核生物的mRNA前体中,除了贮存遗传序列外,还存在非编码序列,称为内含子。

外显子:真核生物的mRNA前体中,编码序列称为外显子。

原核生物的mRNA一般每分子都带有多于1条多肽链的遗传信息,称为多顺反子的mRNA。

真核生物mRNA与之不同,一般一个分子只携带一条多肽链的遗传信息,因而称为单顺反子的mRNA

启动子:在某一基因上由RNA聚合酶识别,结合并确定转录起始位点的特定序列称为启动子,它一般位于转录起点的上游,约包括40个碱基对。

转录鼓泡:新生RNA链与模板链DNA形成一杂交双螺旋链,约有8bp,含有核心酶、DNA模板和新生RNA的区域称为转录鼓泡。转录鼓泡中有17bpDNA解螺旋。

提供转录停止信号的DNA序列称为终止子。

合成时若以走向为3'→5'的亲代链为模板,子代链就能连续合成,称为前导链(leading strand)

蛋白质的合成

模板资料 资源共享

密码子(codon):存在于信使RNA中的三个相邻的核苷酸顺序,是蛋白质合成中某一特定氨基酸的密码单位。密码子确定哪一种氨基酸叁入蛋白质多肽链的特定位置上;共有个密码子,其中61个是氨基酸的密码,3个是作为终止密码子。

同义密码子(synonym codon):为同一种氨基酸编码的几个密码子之一,例如密码子UUU和UUC 二者都为苯丙氨酸编码。

反密码子(anticodon):在转移RNA反密码子环中的三个核苷酸的序列,在蛋白质合成中通过互补的碱基配对,这部分结合到信使RNA的特殊密码上。

核糖体(ribosome): 核糖体是很多亚细胞核蛋白颗粒中的一个,由大约等量的RNA和蛋白质所组成,是细胞内蛋白质合成的场所。每个核糖核蛋白体在外形上近似圆形,直径约为20nm。由两个不相同的亚基组成,这两个亚基通过镁离子和其它非共价键地结合在一起。已证实有四类核糖核蛋白体(细菌、植物、动物和线粒体)它们以其单体的、亚单位的和核糖核蛋白体RNA的沉降系数相区别。细菌核蛋白体含有约50个不同的蛋白质分子和3个不同的RNA分子。小的亚单位含有约20个蛋白质分子和1个RNA分子。大的亚单位含有约30个蛋白质分子和2个RNA 分子。核蛋白体有两个结合转移RNA的部位(部位和部位),并且也能附上信使RNA,简写为Rb。

多核糖体(polysome):在信使核糖核酸链上附着两个或更多的核糖体。

模板资料 资源共享

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo9.cn 版权所有 赣ICP备2023008801号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务