基于任务模块的组织核心知识链抽取模型研究
第
哈尔滨工程大学学报
JournalofHarlDinEngineeringUniversity
Vol.38 >.6
Jun. 2017
基于任务模块的组织核心知识链抽取模型研究
&’2,王铁男1
(1.哈尔滨工业大学管理学院,黑龙江哈尔滨,150001 % 2.哈尔滨工程大学经济管理学院,黑龙江哈尔滨,150001)
赵健宇
摘要:为提高组织的知识流动效率,加快任务模块协同进程,提升管理者的战略决策质量,集成本体论与过程视 图理论,定义了任务模块运营模式下,过程知识链和核心知识链的知识流动标准并对两者关系予以论证。在此基 础上,从过程知识链中抽取核心知识节点,建立核心知识链抽取模型,阐述了模型的操作规则、运行步骤并加以讨 论。研究结果表明:核心知识链是组织高效满足知识主体需求的有效途径;通过对不同任务模块知识主体的知识 需求及知识流动次序的显性化表征,知识主体能够更具针对性、更富有成效地完成自身任务。关键词:任务模块'知识流动'核心知识链'本体论'过程知识链
DOI & 10. 11990/jheu. 201606067网络出版地址:http://www. cnki. net/kcms/detail/23. 1390. u.20170330. 1000. 016. html 中图分类号:C93文献标志码:A文章编号= 1006 -7043(2017)06 -0982 -07
The model of core knowledge chainf extraction of task-modularization
(1. School of Management,Harbin Institute of Technology,Harbin 150001,China; 2. School of Economics and Management,Harbin Engineering University,Harbin 150001,China)
ZHAO Jianyu1,2,WANG Tienan1
Abstract $ We aim to improve the
efficiency of knowledge flowin an organization,tver task modules and ultimately improving thequality of strategic decision making at management level. Integrating theories related to ontology and process view,we define knowledge flow as the norm of the process and core knowledge chains under tlie operational mode of a tasl^ moduk, and we demonstrate the relationship between the two.Based on this approach,we extract cor^ knowledge nodes from the process knowledge chain,st up the core-knowledge-chain extraction model,and state and discuss the operating ruls and procedures of the model. The resultsshowthat the core knowledge chain is an effective way for organizations to satisfyWith explicit representations of knowledge need and theorder of theflowof knowledge entities under different task modules,knowledge entities will complete their tasks much more purosefully and effectively.Keywords $ task-modularization; knowledge fow; core knowledge chain; ontology; process knowledge chains
知识经济时代,任务分解的模块化运营模式成 为组织应对不可预测环境变化的重要战略措施[1]。 而基于任务模块的知识流动作为满足知识主体知识 需求,低成本获取知识技能缩小主体间知识差距,提 高知识创造效率的重要途径[2],已成为当前新兴的 知识管理议题。
基于任务模块的知识流动相关研究经历了 “模块规划一任务联结一语义转换一信息抽取”的 不同阶段。Fensl提出,模块规划是组织生产加工
和知识分配的途径[3]。随后,知识挖掘、知识地图
等相关研究的兴起,也为基于任务模块化的知识 流动研究提供了新的思路。等认为围绕模块 规划提取的任务联结是知识流动的渠道[4]。-
强调,由于业务联结划分形成的不同任务模块
Liu
bm
Ru
是知识流动的多个知识节点,多个节点的次序性 联结即为知识流动提供了条件的空间,每个节点 内蕴含的语义信息是关联不同知识节点知识信息 内容的关键,并运用本体论提出了 一个团队知识 流动的虚拟构想[5]。等根据组织成员对任务
La
:2017 -03 -30.
7160204171602042);国家社科
基金重点项目(14AGL004);中国博士后一等资助项目 (2015M570299);黑龙江省博士后一等资助项目(LBH - 15075 #;中央高校基本科研费专项基金(HEUCF150901 #.
作者简介:赵健宇(1986 -),男,讲师,博士后.通信作者:赵健宇,E-mail :jianyu64@sina. com.
收稿日期网络出版日期基金项目:国家自然科学基金项目(,
=2016 -06 -12.
模块节点查阅次数的记录动态时抓取了不同流程
的语义次序和信息内容,运用网络理论提出 了任务模块化的知识流动网络模型[6]。等 结合过程视图( )理论,采用知识关联
Petri
processview
Edgar
度方法论证了基于知识流动语义次序进行信息的
第6期赵健宇,等:基于任务模块的组织核心知识链抽取模型研究
• 983 •
抽取[7]。Chauhan等选择语义转换的结构特征为 切人点,根据本体转移特性建立了知识信息抽取
和流动的概念模型,用以分析语义访问者对于某 种特定知识的兴趣和数据渠道[8]。
综合以上发现虽然现有研究多采用知识获取、 知识语义次序等理论分析任务模块的知识流动问 题,但存在两个不足:1)现有模型缺少一个整体串 联知识信息内容的结构,对不同模块间信息如何协 同的分析有避重就轻之嫌;$ )若基于Pa:l[9]等学者 的知识链视角来理解任务模块化背景下的知识流动 现象,那么在不同任务模块共同构成的多重信息本 体知识链中,如何根据知识需求、知识重要程度以及 知识关联度抽取组织发展所需的核心知识仍存在疑 问[1%_12]。鉴于此,本文以本体论为理论核心,以不 同任务模块构成的组织知识链为对象,通过对不同 知识流动形成的分析完善现有模型,更透彻地认识 和解释知识流动在模块网络运营模式中的作用原 理,在完整保留知识链原始序列的基础上,识别影响
知识链产出的核心知识内容。
1定义与模型
1.1过程知识链的知识流动标准
任务模块的划分使得知识的流动成为主导组 织资源的重要依托,每个任务模块所蕴含的知识 内容亦成为知识主体完成相关工作所需的知识编 码序列[13]。过程视图理论认为,组织在分解任务 关系时,通过整合不同层级关系的知识内容和功 能组件形成业务流程环节,由此产生由多个任务 模块构成,且具有指向次序逻辑的组织过程知识 链[14],而多个任务模块的次序性联结也为过程知 识链的知识流动提供了渠道和平台,从事不同任 务的知识主体一方面可将自身的高价值知识贡献 于相关的生产实践活动中,另一方面也能够参考 或借鉴知识链中有利于任务进程的相关知识。根 据上述分析,建立任务模块化知识流动的过程知 识链结构模型,如图1所示。
Fig. 1 Structure of process knowledge chain based on task-modularization
过程知识链的形成代表组织不同任务模块间各
类相关知识在隐性环境中的联结性传递[15]。由于 过程知识链的知识内容具有层级性、关联性等特质, 加之任务模块的划分目的是带动组织内部非一体化 下的分工整合[16],故每个任务模块蕴含的知识内容 一定由多种存在相互关联的知识概念集合共同构 成[17]。抽取每个任务模块知识内容的意义在于,通 过对知识链核心知识内容的挖掘与整合,组织可随 时根据环境所需激活相关任务模块节点的知识沉 淀,维护并及时更新组织核心竞争力的优势来 源[18 ]。由此,为达到从过程知识链中抽取核心知 识,构建核心知识链的目的,首先提出相关概念$
定义i系统边界内,本体代表过程知识链关 系中包含的多个关键词及相关知识间的层次关系。 过程知识链本体记做Ontology = [),W],其中)代 表过程知识链内可能包含的信息,W映射)领域(过 程知识链)本体内信息的递进层次关系集合,记做 W = . + 3X=,根据LkiR]对于本体层级知识包含关系的定义,3和=代表系统边界内两个独
立、且存在交互关系及作用的知识概念。
定义2层次关系集合W由高层级的复杂性知 识p和底层级的一般性知识U共同构成,其中复杂 性知识控制并影响一般性知识,记做p =丨U|U = C,/(p)/,其中C代表知识链内的本体信 息。对于特定的模块化任务, 存在个体的知识需求 〇以.1^(财)),当且仅当a + 〇以.1^(财))时,该
66
任务模块的知识集合可以被访问。
定义3规定卩和‘是领域本体)中存在的两 个独立知识集合,若P存在于‘的上层,或P是过程 知识链中论证‘的前提,则将P和‘称为过程知识链 中的关系知识集。其中,P为‘的初代知识,‘为^的 迭代知识。根据1+3-5知识进化论的观点[1N],P和 ‘是存在层级关系的两个知识集合,结合的知识 挖掘论模型&$%],P和‘也可分别理解为知识螺旋中 的表层知识( )和深层知识 ( ),记做
+( p# = q\\q = ( p) ( %
Lrn
surface-levelknowledgeCeep-levelknowledgeSrjpreAiseFee( ‘)= . P |p= core( ‘)l。
• 984 •定义4
哈尔滨工程大学学报
第38卷
知识节点D.代表不同从属关系且具 有异质性的知识集合。对于一个知识节点D)包含 的知识内容记做KC(M,)=丨C,C$,…,由过程知识链中的本体信息决定;
定义5如果任意两个节点Ma与Du存在从属 性质的依赖关系,则两个节点的交互记做H〇(Ma, Du )。进一步地,若过程知识链中任意两个节点的关 系隶属于 knowledge Collection = RCKD^Dj),则 判断Da与Du在过程知识链中为从属临近关系。
定义6过程知识链本体内,流动的知识是由 知识节点集合 KnowledgeCollection = )(D* )*依赖 关系集合 RelationshipCollection = R0(DP,财^)和 知识需求集合DemandCollection = De(D* )构成的 三元组,记做KF =〈)(D)),R0(Da,DJ,De(D))〉。 其中,RelationshipCollection = ROfD^D^)的子集 在知识节点集合)(D))中客观存在,是具有从属 临近关系的方向性节点。
定义G过程知识链本体内,知识流动KF = 〈)(D) ),R0(Da,DJ,De(D))〉的路径起始点为 知识流动的初端D&,中间知识节点为D$,D3,…, D.:,终止节点为知识链的终端D.。如果从属依赖 关系 R0(Da,Da+1) + R0(Da,D)(a,U 均为常 数),且Dp和Dp+1中任意一个节点能提供的知识内
容均满足De(D,),则知识流动路径记做Path =
D& iD^Path =D& iD.的流通性由过程知识链 本体内的语义内容决定,每一个知识节点D)的知 识关联性用进行判断。
定义8 过程知识链本体内,存在KF = 〈)(D) ),R0(Da,Du),De(D))〉和随机知识节点 屹、1=,均有(屹,1=) + )(D,)。规定知识流动路 径Pah =屹i D=,认为屹相较于D=具有优先等 级,记做Level(3> y^Level的优先程度是在模块 化分解的过程知识链中判断知识节点势差和知识流 动方向的先决条件,每一级Level对迭代知识的影 响由过程知识链本体内的信息集合决定。
定义Y过程知识链本体内,规定可以串联异 质性知识、整合分散知识并供给详细专业化解释的 知识节点称为社会化知识节点(socialization knowledge nodes,SKN),对于为保持任务模块初始次序所 添加的知识概念称为次序知识节点(order knowledge nodes,0KN),所有次序知识节点集合中具有临 近关系的方向性节点称为临近知识节点(neighboring knowledge nodes , NKN )。 其中, 0KN A SKN , 如果 NKN中任意知识节点的指向性次序不满足任务模 块化划分的初始次序,则将NKN中违规的知识节点 并人0KN。
1.2
2基于任务模块化的过程知识链本体信息分解结构
Fig. 2 Ontological information decomposed structure of process knowledge chain based on task-modularization
图
核心知识链的知识流动标准
Words共同决定。根据知识的异质性特征,Key Words
核心知识链由默会知识构成,是决定组织竞争
能力和优势的关键知识集合,贯穿于组织基于任务 模块化的生产、销售与售后服务过程中。由于默会 知识具有高情境特性,且无法以文本化形式编 撰[21]。故为了整合任务模块内容,需从过程知识链 中对核心知识进行提取,完整塑造组织的核心价值 链。由此,借鉴Zhuge隐性知识挖掘的研究结 论[22],界定核心知识链的知识流动标准$
定义10核心知识链由知识需求者demandei•、过 程知识链的所有知识节点D)及和基于任务的Key
选取特定的知识属性=表征。核心知识链的用&5,- KnowledgeChain = [demander,D*,=]表示,其中=对 于demandei•的反馈2/[决定核心知识链的适用性;
定义11 核心知识链的知识节点用CM = 〈Collection ( KM ),CC〉表示,其中 Collection ( KM)代 表核心知识链的节点集合,(CM,KM)+ Collection (KM),CC代表核心知识的本体知识概念集合,子 集为过程知识链本体定义的知识节点内容。 将核心 知识链的知识节点CM的知识内容记做CC(D)=丨),)$,…,)/,)由核心知识链中本体定义的知
第#期赵健宇,等:基于任务模块的组织核心知识链抽取模型研究• 985 •
识内容决定。
过程知识链本体内,对于知识流动
$〈()),(a,,())〉中存在的 两个核心知识节点a与u,如果两个节点存在 相互影响或从属性质的依赖关系,记做( a,
。同时,严格限定充要条件(p, 存在时,a + a;u + 。
定义13 过程知识链本体内,核心知识流动 ( #是形成的核心知识链(
,也称为关键词知识链,
)的动态要素性条件。核心知识流动是由核心 知识节点集合 =〔〔(^ )* 核心知识节点间的从属依赖关系 -
= ( , #, 以 及核心知识需 求集合
= ( )构成的三兀组,记
做 =〈() ),(a,,())〉。
节点
CM)的知识关联性用进行判断。
KF
定义1F
CD
RODDjDeD
CMCM
D
CMJ
CMDCM
CROCMRODDj+KF
过程知识链本体内,存在核心知识流
动 =〈() ),(,),())〉和 两个随机核心知识节点、=,有(,=) + ())。规定核心知识流动路径 = =,认为相较于=具有优先等级,记做
>=)。的优先程度决定核心知识链
CRODaDCDeD
CM3CMCM3CM
CCDCPahCM3I CMCM3CMCLevee(3CLevel
CKFCCD
定义15
coreknowledgeflowscore
knowledgechainkeywords chain
coreknowledgecollectionD
corerelationship
collectionCRODcoredemandcollectionCDe
CKFCCDCRODDjCDeDCKF
CCDCRODDjCDeDCMCMCMCMCM
CMCCD
CRODDCROCMCM
定义14
过程知识链本体内,核心知识流动
=〈()),(a,,())〉的路 径起始点为&,中间核心知识节点为$,3, …,.:,终止节点为核心知识链的终端.。严格 限定充要条件核心知识节点) + ())的顺 序指向,得到 (:,) + (a,u), 7$1,2,…,.,则核心知识流动路径表示为
i^ = &.的流通性
CPathsCMiCMCPathCM1CM
由核心知识链本体内的内容决定,每一个核心知识
中核心知识节点的势差。
过程知识链流动标准的形成可以有效地从任务 模块化或知识供给的角度为知识主体界定知识流动 规则,融合不同任务模块彼此传递的知识概念,合理 调整组织在任务执行过程中可能面临的知识冲突。 然而,由于知识链中知识节点包含的概念可能较为 宽泛,这对于具有专业知识的知识主体进行辅助决 策时并不适用,加之传统单一的过程知识链知识流 动对于组织核心知识的整合和转化效率偏低,故对 于不同的任务模块而言,知识流动应更加明确地概 括其包含的知识语义,区分交叉的知识层级,将核心 的重要知识予以凸显。由此,将以任务模块化为情境 的核心知识链抽取原理概括为组织根据知识所需和 模块信息的权限访问原则,用以精炼并为知识主体提 供关键任务信息,更为准确进行产品决策的知识管理 思想和方法。根据上述理论,将模块化任务流程所形 成的过程知识链予以拆分和精确,建立基于任务模块 化的核心知识链抽取原理模型(如图3所示)。
2
$
模型的操作原理及算例
每个知识节点的知识内容可以多次读取。
操作规则3核心知识节点是过程知识链知识 流动路径中一个或多个高价值知识概念的集合单 位。核心知识节点的激活条件是直接关联的任务团 队对核心知识概念的访问,当且仅当所有核心知识 节点被激活后,核心知识链形成。
操作规则4核心知识的抽取必须以任务模块 的实际要求为导向,且任意两个核心知识节点间的 隐含次序必须遵守过程知识链知识流动的原始
1
操作规则及过程操作规则1
过程知识链知识节点的访问需要
相应的职能权限,即知识节点需要验证访问人员是否 拥有读取该节点知识的资格,用/予以结果反馈。
操作规则2知识节点的指向具有顺序属性,
YN
对应知识流动的方向。每个知识节点包含的知识内 容严格限定知识供给对象,对于适用的知识需求者,
• 986 •哈尔滨工程大学学报
第38卷
次序。
核心知识链中,如果两个核心知 识节点CM,和CM=存在CLevel( CM, >CM=)的等 级关系,则CIG中的核心知识内容读取顺序先于 CM=。当且仅当CM,的核心知识访问完成后,CM= 的核心知识访问权限才能被开放。
操作规则6核心知识链中所有核心知识节点 的内容可以反复被读取,当且仅当所有任务模块均被 知识主体完成后,核心知识节点完成相关的知识 供给。
操作规则5
点可划人此类知识主体的核心OKN。反之,IF判断 结果为N,代表该知识主体未经授权或无法访问该 知识节点的知识概念,THEN从知识流动KF = 〈)(M, ),RO(Ma,Mu),De(M,)〉中剔除该节点并
返回过程知识链起点进行重新搜索;
2) 假设过程知识链本体内,存在SKN= OK知识节点满足知识主体的知识需求,对应知识节点 M = OKN;
3) 临近知识节点NKN =丨糾V枳丨,规定0人—(M*),多 OKN 且R0(炉,0) E RO(M„,M6);
为满足从事不同任务模块工作知识主体获取高 价值知识的精神需求,提高知识供给和任务模块间 的协同度,应将常规知识链中知识节点内蕴含的知 识概念进行精简,完成对核心知识的最小化扩展,将 其定义为最小次序知识节点集合(minimum order knowledge nodes collection,MOK),该集合包括社会 化知识节点及次序知识节点,以使所有核心知识节 点的隐含顺序满足过程知识链,即任务模块化执行 顺序的初始次序。
借鉴EshuiS23]以本体论为视角的仿流动线性 假说,核心知识链知识流动模型的运行原理遵循最 小次序知识节点集合探寻ii核心知识节点依赖关系 识别核心知识节点知识内容提取i核心知识链串 联4个核心流程。
2.1.1 最小次序知识节点集合
规定任务模块化本体产生的过程知识链知识流
动 KF =〈)(M,),RO(Ma,Mu),De(M,)〉存在社 会化知识节点(SKN)和若干次序知识节点(OKN)。 从事不同模块任务知识主体的个性化知识需求是任 意模块的知识供给内容,将过程知识链知识流动、知 识需求和社会化知识节点作为模型输人端,运用核 心知识节点集合CC(D)=丨),),…,)/求解最 小次序知识节点集合。其中,SKN是得到MOK重 要的先决条件,任意节点与其他知识节点自身概念 的顺序关系必须符合任务模块化的初始顺序。通过 本体信息循环的方法挖掘范围次序的NKN,直至出 现该节点和OKN中其他知识概念的关系满足任务 模块化顺序后停止循环。通过SKN从核心知识节 点中得到MOK,借助MOK获得核心知识链中的核 心知识节点CC(M)),具体操作步骤如下:
输人端(Input Side)$KF =〈)(M,),RO(Ma,M4),De(M,)〉;SKN;De(M,) 输出端(output side):MOK&):
1)建立以知识需求为前提的最小次序知识节 点集合判断标准〈De(D) ),D),Y/N〉,并基于IF/ THEN语句进行判断。IF知识主体拥有该模块的访 问和执行权限,对应判断结果为Y,THEN该知识节
4) 规定NKN #$,在NKN中随机挑选一个骤1)中不属于知识主体知识需求的知识节点并 从NKN中将其移除;
5) 假设3(-,MJ + OKN,过程知识链知识流动Level处=〈人—(财*),110(财„,财丄〜(财*)〉中存在 (汾> 0)且不存在Level( P 的情况,贝IJ将纪添加至6
OKN,得到P E OKN;
) 循环执行4CCMt)和5CC),直至出现MOK
MOK = OKN
止循环。得到()中(炉)=。2. 1. 2核心知识节点依赖关系识别
KF=对于以任务模块化划分为合作方式的知识流动 〈)(M,),RO(Ma,Mu),De(M,)〉,1) ~ 6) 可以完成基于初始逻辑关系的核心知识链最小次序 知识节点集合归纳。以最小次序核心知识节点集合 为依据,同样引人IF/THEN语句进行可知核心知识
链知识节点间的依赖关系识别:
7) 从核心知识节点CC(Mt)中随机挑选两核心知识概念C( P)和C( 0),判断两个随机核心知 识概念是否满足知识主体完成该模块任务的实际需 求。若满足,执行8),否则返回过程知识链初始节 点重新挑选;
IFRO8) 对于两个核心知识概念C(於)和C( 0):(M„,M6)存在 R0(积,0),THEN核心节点间依赖关系CRO( C( P),C( 0))IF成立■ RO (
)
不存在 RO ( P, 0),或 C ( P),
THENC(-) @ MOK,
核心节点间依赖关系CRO( C(朝),C( 0))
^不成立9) 对RO(Ma,M6)的集合内容进行判断,仅当 RO(M„,M6) #0 时,P E C(P),0 E C(0)。 2. 1. 3 核心知识节点知识内容提取
社会化知识节点(SKN)的存在使得蕴含于不同 任务模块间的知识一定具有相关性。基于这种知识 的虚拟相关性,KF=〈)(Mt将过程知识链本体的知识流动 ),RO(Ma,Mu),De(M,)〉中,需要进 行核心知识提取的知识集合用NE表示,每一个独
当第6期赵健宇,等:基于任务模块的组织核心知识链抽取模型研究
• 987 •
立的知识内容用\"表示。
在完成对MOK的获取及核心知识节点间依赖 关系的识别后,考虑MOK包含的子集内容对NE进 行精细化提炼。将知识主体的知识需求,最小次序 知识节点及社会化知识节点作为输人端,采用核心 知识节点CC(M)=丨),),…,)丨和IF/THEN语 句对核心知识节点知识内容进行提取。输人端(Input Side^DMM* ),MOK,SKN 输出端(Output Side) :CC(\")
10) 规定过程知识链本体中,的知识内容无需专业化迭代。
2. 1.4
核心知识链串联
在完成1) ~16)后,重新进人知识链初始端,以
De(D))为验证条件对所得的核心知识节点知识 内容CKE进行最终的模块化知识检验。若所有 CKE和非精细化的知识内容均满足任务模块化的
实际要求,则将所得核心知识内容按照过程知识链 的初始顺序予以串联,得到核心知识链并反馈于本 体领域内。2.2算例检验NE = 0,
CRO(CA) =0且 CRO(Ma,Mu) =0;
11) 对于知识节点%,存在丨% + NE=NEUSKN| VA KE(A)且 KE(A) + DefM* );
12) 对于知识内容\",存在\"=0|\" + NE| V\"/且 CRO(CA) = CRO(CA) UDee(A);
13) 对于知识节点W,存在济+MOK|VW /,
济 @SKN|VW / 且 CRO(KE(WCA) = CRO(CA) U
);
14 )对于知识内容\",存在
+ CRO(CA) | V\"UIF{\" + NE| V\"/,THEN 将
知识内容\"从CRO(CA)中移除;
15) 对于知识内容\",IF{\" + CRO(CA) | V\"/且.Dee(\") + CRO(CA) | V\"/,THEN 将知识内容\"从 CRO(CA)中移除;THEN16) 检验精细化NE,IF存在NE + De(MDeM 整理并返回 CRO^A^IFDeCMJNE @ (,),THEN重新执行12) ~15),直至提取完 整的核心知识节点知识内容CKE。
初始条件中,CRO(CA)实际上源于知识主体 对NE知识内容的迭代。随后,CRO(CA)纳人了 MOK的知识内容。若CRO(CA)中隐含的部分知识
内容直属于NE或由NE的核心概念衍生,为实现核 心知识链对关键知识的隐匿和权限保护,将其从 CRO(CA)中剔除。最后,从CRO(CA)中淘汰已经 包含或无价值的概念化知识内容,得到核心知识节 点的知识内容。
根据信息本体论,如果丨\"+ NE| V\"/,则认为
D知识内容\"存在于过程知识链中的某个知识节点 中。其中D可能有.个子节点M,„(. = 1,2, 30)。倘若每个D.蕴含的知识内容均在NE中存 在,或可以被NE中相关的其他知识语义所替代,则 认为知识内容\"NE是NE的子概念。同时,知识主体从 中提取知识内容\"的迭代知识整合得到核心知 识节点中的核心知识内容。MOKSKN进一步地,对于属于 但不属于的某个或个多个过程知识链知 识节点,考虑到其一定包含于CRO(CA)中,故相应
选用图1进行算例分析,验证模型和正确性和 科学性。根据图
1,知识节点D2是后续任务模块开 展的前提,需要对其概念进行精细化筛选,故建立该 知识节点的知识适用性判断标准三元组
[demander,M2,=]用以满足该任务分配主体的知 识需求,知识节点D2在映射核心知识链时应当被确 认为社会化知识节点(SKN)。同时,假设知识节点
D?是决定任务完成的核心任务模块,故知识节点
D?包含的知识子集对其他任务模块的知识内容应
当具有更完善的解释力,建立该知识节点的知识适
用性判断标准三元组[demandei^M?,=],将知识节
点务模块化知识节点就由 D?添加至社会化知识节点SKN中。至此图1的任
SKN =丨Mi,#? /构成。在确立社会化知识节点SKN后,借助1) ~ 6) 可求得知识链的核心知识节点及最小次序知识节点
集合。 图1中在排除概念化知识节点后,得到临近的 次序知识节点OKN = =
OKN =
.M2,M5/。由于 Level (Mi > M2)且
Level (M1 >M?),故知识节点M不能添加至OKN 中,由于 Level(M2 > M!)且 LeveKM? 集内容整合。例如,若分解后的子任务模块内容及 本体知识信息结构(如图2)中存在不同层级知识间 的相互迭代关系,如 De e(M 21,M22) + CRO(M221),(M21,M22) + NE; Dee(M31,M32) + CRO(M311),(M31,M32) + NE; /,, ,),• 988 •哈尔滨工程大学学报 第38卷 Dee(M51,M52) + CRO(M523 ),Dee(M51,M52) + NE 故将核心知识节点的知识内容CM& =丨 M523丨。将不同核心知识节点的知识内容予以串联, 得到组织的核心知识链。 [8] CHAUHANA,VIJAYAKUMAR V,RAGALA R. Towards a multi-level upper ontology/ foundation ontology framework as background knowledge for ontology matching problem [J]. Procedia computer science,2015,50: 631 -634.[9] PATIL S K,KANT R. A fuzzy AHP-TOPSIS framework for ranking the solutions of Knowledge Management adoption in Supply Chain to overcome its bariers [ J ]. Expert systems with applications,2014,41(2): 679-693. 3结论 核心知识链的知识节点可能由一个或多个 [10] TSENG S-M. A study on customer,supplier,and competitor knowledge using the knowledge chain model[J]. International 过程知识链中的知识节点抽取产生。核心知识链的 journal of information management,2009,29(6) : 488-496. 知识流动次序严格遵循模块任务查阅及执行次序; [11 ] GILR J,MARTIN-BAUTISTA M J. A novel integrated 2) 核心知识链能够为知识主体提供任务执行 knowledge support system based on ontolog learning : Mod el specification and acase study [ J ]. Knowledge-based 时的高价值知识需求,也是组织针对性进行知识创 systems,2012,36: 340-352. 造等活动的重要依据; [12] WANG K,TAKAHASHI A. Semantic web based innova 3) 核心知识链是对基于任务模块化过程知识 tive design knowledge modeling for collaborative design 1) 链知识流动的深人挖掘、凝练、细分与最小化,可应 用于组织内部的知识交流,提高组织的创新效率和 知识支持效率。 研究明确了过程知识链与核心知识链的关系, 解决了繁复任务模块环节背景下,组织如何为知识 主体提供知识支持,改善知识流动效率等决策问题。 研究仍存在许多值得继续探索的方向:一是选 择实际的组织机构对提出的理论模型加以验证;二 是根据从事不同任务模块工作的职能团队特性对原 理模型进行个性化的改进和调整。 [J]. Expert systems with applications,2012,39 ( 5 ): 5616-5624. [13] SORENSON O, RIVKIN J W,FLEMING L. Complexity, networks and knowledge flow [ J ] .Research policy,2006, 35(7) : 994-1017. [14] CEPEDA G,VERA D. Dynamic capabilities and operation al capabilities: A knowledge management perspective [ J ]. Journal of business research,2007,60(5): 426 -437.[15 ] WONG H-K. Knowledge value chain: implementation of new product development system in a winery [ J ]. Theelectronic journal of knowledge management,2004,2(1): 77 -90.[16 ] TSENG S-M. Correlations between extern^ knowledge and the knowledge chain as impacting service quality [ J ]. Journal of retailing and consumer services,2012,19(4) : 429 -437.[17] RYOO S-Y,KIM K-K. The impact of knowledge comple mentarities on supply chain performance through knowledge exchange[ J]. Expert systems with applications,2015,42 (6): 3029-3040. [18 ] NASRE S,KILGOURM D,NORRI H. Strategizing nie- ness in co-opetition : The case of knowledge exchange in supply chain innovation projects [ J ]. European journal of operational research,2015,244(3) : 845-854. [19] HUANG J J. Theevvlutionary perspective of knowledge creation-A mathematical representation [ J ]. Knowledge- based system,2009,22 : 430-438. [20 ]LIUD-R,LAI C-H. Mining group-based knowledge flows for sharing task knowledge[ J]. Decision support systems, 2011,50(2) : 370-386. [21 ] PHELPS C C. A longitudinal study of thie influence of alli ance neworl^ srucure and composition firm exploratory innovation [J ]. Academy of management tournal,2010,53 (4) : 890 -913. [22 ] ZHUGE H. Knowledge flownetwork planning and simulation [J]. Decision support systems,2006,42(2) : 571 -592.[23 ] ESHUIS R,GREFEN P. Constructing customized process views[J]. Data & knowledge engineering,2008,64(2): 419 -438= 参考文献: [1]OHSJ,YEOMHY.Acomprehensiveframeworkforthee- vali+ation of ontol〇5 modularization [ J]. Expert systems witli applications,2012, 39(10) : 8547 -8556.[2 ] TASI W. Knowledge transfer in intraorganizational net works: Effect of network position and absorptive capacity on business unit innovation and performance [ J ]. Academy of management journal,2001,44(5) : 996 -1004. [3 ] FENSEL D. Ontology-based knowledge management [ J ]. Computer,2002,35(11): 56-59. [4 ] LIUDR,LINCW. Modeling the knowledge flowviewfor collaborative knowledge support [ J ]. Knowledg-based systems, 2012, 31: 41 -54. [5] RUBIN T H,AAS T H,STEAD A. Knowledge flow in Technological Business Incubators: Evidence from Australia and Israel[ J]. Technovation,2015,41-42: 11 -24.[6 ] LAI C H,LIU D R. Integrating knowledge flow mining and collaborative filtering to support document recommendation [J]. Journal of systems and software,2009,82(12): 2023 -2037. [7] EDGAR S M,SERNA A. Ontolog for knowledge manage ment in software maintenance [ J ]. International journal of information management,2014,34(5) : 704-710. 本文引用格式: .[J].哈尔滨工程大学学报,2017, 38(6): 982-988. ZHAO Jianyu,WANG Tienan. The model of core knowledge chain's extraction of task-modularization [ J] • Journal of Harbin Engineering University,2017, 38(6) : 982-988. 赵健宇,王铁男基于任务模块的组织核心知识链抽取模型研究 因篇幅问题不能全部显示,请点此查看更多更全内容