您好,欢迎来到化拓教育网。
搜索
您的当前位置:首页卡尔曼滤波

卡尔曼滤波

来源:化拓教育网


4.MATLAB源代码:

(1)UKF源代码:

function [x,P]=ukf(fstate,x,P,hmeas,z,Q,R)

% UKF Unscented Kalman Filter for nonlinear dynamic systems

% [x, P] = ukf(f,x,P,h,z,Q,R) returns state estimate, x and state

covariance, P

% for nonlinear dynamic system (for simplicity, noises are assumed as

additive):

% x_k+1 = f(x_k) + w_k

% z_k = h(x_k) + v_k

% where w ~ N(0,Q) meaning w is gaussian noise with covariance Q

% v ~ N(0,R) meaning v is gaussian noise with covariance R

% Inputs:

% f: function handle for f(x)

% x: \"a priori\" state estimate

% P: \"a priori\" estimated state covariance

% h: fanction handle for h(x)

% z: current measurement

% Q: process noise covariance

% R: measurement noise covariance

% Output: x: \"a posteriori\" state estimate

% P: \"a posteriori\" state covariance

L=numel(x); %状态向量的个数

m=numel(z); %测量状态向量的个数

alpha=1e-3; %default, tunable

ki=0; %default, tunable

beta=2; %default, tunable

lambda=alpha^2*(L+ki)-L; %scaling factor

c=L+lambda; %scaling factor

Wm=[lambda/c 0.5/c+zeros(1,2*L)]; %weights for means

Wc=Wm;

Wc(1)=Wc(1)+(1-alpha^2+beta); %weights for covariance

c=sqrt(c);

X=sigmas(x,P,c); %sigma points around x

[x1,X1,P1,X2]=ut(fstate,X,Wm,Wc,L,Q); %unscented

transformation of process

% X1=sigmas(x1,P1,c); %sigma points around x1

% X2=X1-x1(:,ones(1,size(X1,2))); %deviation of X1

[z1,Z1,P2,Z2]=ut(hmeas,X1,Wm,Wc,m,R); %unscented transformation

of measurments

P12=X2*diag(Wc)*Z2'; %transformed cross-covariance

K=P12*inv(P2);

x=x1+K*(z-z1); %state update

P=P1-K*P12'; %covariance update

function [y,Y,P,Y1]=ut(f,X,Wm,Wc,n,R)

%Unscented Transformation

%Input:

% f: nonlinear map

% X: sigma points

% Wm: weights for mean

% Wc: weights for covraiance

% n: numer of outputs of f

% R: additive covariance

%Output:

% y: transformed mean

% Y: transformed smapling points

% P: transformed covariance

% Y1: transformed deviations

L=size(X,2);

y=zeros(n,1);

Y=zeros(n,L);

for k=1:L

Y(:,k)=f(X(:,k));

y=y+Wm(k)*Y(:,k);

end

Y1=Y-y(:,ones(1,L));

P=Y1*diag(Wc)*Y1'+R;

function X=sigmas(x,P,c)

%Sigma points around reference point

%Inputs:

% x: reference point

% P: covariance

% c: coefficient

%Output:

% X: Sigma points

A = c*chol(P)';

Y = x(:,ones(1,numel(x)));

X = [x Y+A Y-A];

(2)输入文件源代码:

%n=3; %number of state

clc;

clear;

n=3;

t=0.1;

q=0.2; %std of process

r=0.3; %std of measurement

Q=q^2*eye(n); % covariance of process

R=r^2; % covariance of measurement

%f=@(x)[x(2);x(3);0.05*x(1)*(x(2)+x(3))]; % nonlinear state equations

f=@(x)[x(1)+t*x(2);x(2)+t*x(3);x(3)]; % nonlinear state equations

h=@(x)[0;x(2);0]; % measurement equation

%s=[0;0;1]; % initial state

s=[0;0;1];

x=s+q*randn(3,1); %initial state % initial state with noise

P = eye(n); % initial state covraiance

N=70; % total dynamic steps

xV = zeros(n,N); %estmate % allocate memory

sV = zeros(n,N); %actual

zV = zeros(3,N);

for k=1:N

z = h(s) + r*randn; % measurments

sV(:,k)= s; % save actual state

zV(:,k) = z; % save measurment

[x, P] = ukf(f,x,P,h,z,Q,R); % ukf

xV(:,k) = x; % save estimate

s = f(s) + q*randn(3,1); % update process

end

for k=1:3 % plot results

subplot(3,1,k)

plot(1:N, sV(k,:), '-', 1:N, xV(k,:), '--',1:N,zV(k,:),'*')

end

%n=3; %number of state

clc;

clear;

n=6;

t=0.2;

q=0.1; %std of process

r=0.7; %std of measurement

Q=q^2*eye(n); % covariance of process

R=r^2; % covariance of measurement

%f=@(x)[x(2);x(3);0.05*x(1)*(x(2)+x(3))]; % nonlinear state equations

f=@(x)[x(1)+t*x(3);x(2)+t*x(4);x(3)+t*x(5);x(4)+t*x(6);x(5);x(6)]; %

nonlinear state equations

h=@(x)[sqrt(x(1)+1);0.8*x(2)+0.3*x(1);x(3);x(4);x(5);x(6)];

% measurement equation

%s=[0;0;1]; % initial state

s=[0.3;0.2;1;2;2;-1];

x=s+q*randn(n,1); %initial state % initial state with noise

P = eye(n); % initial state covraiance

N=20; % total dynamic steps

xV = zeros(n,N); %estmate % allocate memory

sV = zeros(n,N); %actual

zV = zeros(n,N);

for k=1:N

z = h(s) + r*randn; % measurments

sV(:,k)= s; % save actual state

zV(:,k) = z; % save measurment

[x, P] = ukf(f,x,P,h,z,Q,R); % ukf

xV(:,k) = x; % save estimate

s = f(s) + q*randn(n,1); % update process

end

for k=1:4 % plot results

subplot(4,1,k)

plot(1:N, sV(k,:), '-', 1:N, xV(k,:), '--',1:N,zV(k,:),'*')

end

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo9.cn 版权所有 赣ICP备2023008801号-1

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务