B.Basu∗andSubirGhosh†
PhysicsandAppliedMathematicsUnit
IndianStatisticalInstitute
Kolkata-700108
S.Dhar‡
arXiv:hep-th/0604068v3 28 Sep 2006S.A.JaipuriaCollegeKolkata-700005
Wehavestudiedparticlemotioningeneralizedformsofnoncommutativephasespace,thatsimu-latemonopoleandotherformsofBerrycurvature,thatcanbeidentifiedaseffectiveinternalmag-neticfields,incoordinateandmomentumspace.TheAhranov-Bohmeffecthasbeenconsideredinthisformofphasespace,withoperatorialstructuresofnoncommutativity.Physicalsignificanceofourresultsarealsodiscussed.
PACSnumbers:14.80.Hv,11.10.Nx,03.65.-w
I.INTRODUCTION
Thepossibleexistenceofmagneticmonopole(MM)wasfirstdiscussedbyDirac[1]andlaterin[2]innon-abeliangaugetheory.
However,recently[3]thesignaturesofMMincrystalmomentumspaceinSrRuO3,(aferromagneticcrystal),haveappearedaspeaksintransverseconductivityσxy.TheMMformationinlowenergyregime(∼0.1−1eV)inthecondensedmattersystem[3],(ascomparedtothepredictedrange∼1016GeVinparticlephysics[2]),isobviouslythereasonfortheirobservationintheformer.TheMMinσxyisagaindirectlylinkedtoAnomalousHallEffect(AHE)whereσxyisidentifiedastheBerrycurvature.TheveryintrinsicoriginofAHE[4],independentofexternalmagneticfields,suggests[5]thatthewholephenomenamightbeinterpretedasamotionof(Bloch)electronsinanon-trivialsymplecticmanifoldwiththesymplectictwo-formbeingessentiallytheBerrycurvature.ThisisaspecificformofNon-Commutative(NC)space(seeforexample[6]),thatappearsbecauseoneintroduces[3,7]agauge
∂
covariantpositionoperatorxµ≡i∂µ−anµ(k),anµ=i address:banasri@isical.ac.in address:subir˙ghosh2@rediffmail.com ‡Electronicaddress:sarmi˙30@rediffmail.com2 magnetictypeofbehavioriscausedbytheBerrycurvatureinrealspacewhicharisesduetothespinrotationsofconductingelectronsandistheeffectofnoncommutativityinmomentumspace[?]. Keepingthisbackgroundinmind,weputforwardformsofNCspacethatcaninducesingularbehavior(intheeffectivemagneticfield)incoordinatespace.DifferentnovelstructuresofBerrycurvatureappearinourframework.Incidentally,ourworkisageneralizationoftheworkof[5].TheNCstructureanditsassociatedsymplecticform,consideredin[5],wasnotgeneralenoughtoallowthevortexstructuresthatwehaveobtainedhere. WiththisspecialformofNCspacewehavecalculatedthe Aharanov-Bohm(AB)phaseandhaveshownthatthereisamodificationtermduetothenoncommu-tativityofspace-spacecoordinates.Thisleadstonewexpressionandboundforθ-thenoncommutativityparameter. Thepaperisorganizedasfollows:InSectionIIweintroducetheparticularformofNCspacethatwillbestudiedsubsequently.SectionIIIdealswiththeLagrangianformulationofthemodelandtherelateddynamicsinageneralway.SectionIVisdevotedtothestudyoftheAharanov-BohmeffectinthisspecificNCphasespace.InSectionVwediscussthephysicalimplicationsofourfindings. II. NONCOMMUTATIVEPHASESPACE Westartbypositinganon-canonicalphasespacethathastheSnyderformofspatialnoncommutativityandatthesametimethemomentasatisfiesaconventionalmonopolealgebra.Similarstructureshavealsoappearedin[11].InthebeginningwehaveintroducedtwodistinctNCparametersθandbfortheabovetwoindependentformsofnoncommutativitysothattheirindividualrolescanbeobserved.Thephasespaceisgivenbelow: {Xi,Xj}=−θ(XiPj−XjPi),{Xi,Pj}=δij−θPiPj, Xk {Pi,Pj}=bǫijk X2. Wediscussrotationalpropertiesofthevectors.Fromthedefinitionoftheangularmomentum,Lj=ǫjklXkPlwehavethefollowingcommutationrelations, {Xi,Lj}=ǫijkXk,{Pi,Lj}=ǫijkPk+b XiXj X Xk , {Li,Lj}=ǫijkLk+bǫijk X whichyieldsthetotalangularmomentumas ˜j=Lj+Sj.L (3) (4) astheeffectivespinvector,thatisinducedbythealgebra(1).NowangularWenaturallyidentifyS momentumalgebraisgivenby XPij˜j}=ǫijkXk−θd−{Xi,L X3 PPXXijij˜j=ǫijkPk+(b−d)−θdPi,L XX3 ˜k+(b−d)ǫijkXk˜i,L˜j=ǫijkLL 3 Puttingd=bthealgebraisasfollows ˜j}=ǫijkXk−θb−XiPj{Xi,L ˜j=ǫijkPk−θbPiPjPi,L ˜k˜˜Li,Lj=ǫijkL X3X3 (6) TheaboveconsiderationspromptustostudyasimplerNCalgebra,withb=θ, {Xi,Xj}=−θ(XiPj−XjPi), {Xi,Pj}=δij−θPiPj, Xk {Pi,Pj}=θǫijk Xl +3θX3 Xi −θǫ∂jkll X3 X3 .(11) ButfromtheanalysisofJackiw[1]weknowtheimplicationsofthisviolationandhowtolivewithit. III. SYMPLECTICDYNAMICS Non-violationoftheJacobiidentities(atleastuptotheprescribedorder)isessentialinourcasesincewewishtostudythedynamicsbyexploitingtheelegantschemeofFaddeevandJackiw[12]andfollowthenotationofarecentrelatedwork[13]. AgenericfirstorderLagrangian,expressedintheform, L=aα(η)η˙α−H(η), (12) 4 whereηdenotesphasespacevariables,leadstotheEuler-Lagrangeequationsofmotion, ωαβη˙β=∂αH,ωαβ=∂αaβ−∂βaα. whereωαβdenotesthesymplectictwoform.Theinverseofthesymplecticmatrixisgivenbyωαβ. α ωαβωβγ=δγ (13) (14) Forourmodel,following(7),ωαβisdefinedby, −θ(XiPj−XjPi)(δij−θPiPj) ωαβ= −(δij−θPiPj)θǫijkXk 2m weobtain, ˙i=1X +V(X), m ǫijkPj Xk m∗ ˙+θ(P×L), (19) ˙−θ(E.P)P+P=E θ m∗ ×L).+θ(E (21) Itisstraightforwardtoiterate(17)onceagainsothatweobtainageneralizedLorentzforceequationin thefollowingform, ¨i=1X m (E.P)Pi+ θ X3 ×X)kEj.−θǫijk(E (22) WewillstudythesignificanceoftheseequationsintheDiscussion,SectionV,attheend. 5 IV. THEAHARONOV-BOHMEFFECTONNC(SNYDER)SPACE Innon-commutativespacemanyinterestingquantummechanicalproblemshavebeenstudiedexten-sively:suchashydrogenatomspectruminanexternalmagneticfield[14,15],Aharonov-Bohm(AB)[16,17],Aharonov-Cashereffects[18],tonameafew.However,alltheaboveworkshaveconsideredaconstantformspatialnoncommutativity.Inthepresentwork,forthefirsttime,weconsidersucheffectsinthepresenceofanoperatorialformofnoncommutativity.HereweconsiderapurelySnyderformofnoncommutativespace, {Xi,Xj}=−θ(XiPj−XjPi),{Xi,Pj}=δij0, −θPiPj,{Pi,Pj}=(23) thatweobtainedfrom(1)byputting{Pi,PjInthecommutativeAharonov-Bohmeffect,}the=0. presenceofthefluxproducesashiftintheinterferencepattern.Thevalueofthefluxissuchthatthepositionofmaximaandminimaareinterchangedduetoachangeofπinthephaseandvanisheswhenmagneticfieldisquantized.FornoncommutativeAharonov-Bohmeffectavelocitydependentextraterminthefluxariseseveninthepresenceofquantizedmagneticfield[16].Thiscouldbeexperimentallymeasured.Thevelocitycanbesochosenthatthephaseshiftbecome2πorintegermultipleof2π.Sothisphaseshiftmightnotbeobserved.TheAharonov-Bohmeffectinnoncommutativecasecanalsobeworkedoutusingpathintegralformulation[16].Electronsmovingonanoncommutativeplaneinuniformexternalmagneticandelectricfieldrepresentsusualmotionofelectronsinaneffectivemagneticfield.TherelatedABphasecanbecalculatedandityieldsthesameeffectivemagneticfield[17].Usingnon-commutativequantummechanicsAharonov-BohmphasecanbeobtainedonNCphasespace[17]. FortheNCphasespace(23),thevariablesXi,Pjcanbeexpressedintermsofcanonical(Darboux)setofvariablesxi,pj: Xi=xi−θ(x.p)pi;Pi=pi (24) Thexi,pjsatisfy {xi,pj}=δij;{xi,xj}={pi,pj}=0. LetH(X,P)betheHamiltonianoperatoroftheusualquantumsystem,thentheSchr¨odingerequationonNCspaceiswrittenas H(X,P)∗ψ=Eψ. (25)ThestarproductcanbechangedintotheordinaryproductbyreplacingH(X,P)withH(x,p)[19].ThustheSchr¨odingerequationcanbewrittenas, H(Xi,Pi)ψ=H(xi−θ(x.p)pi;pi)ψ=Eψ. (26) Whenmagneticfieldisapplied,theSchr¨odingerequationbecomes H(Xi,Pi,Ai)∗ψ=Eψ. (27)NowwealsoneedtoreplacethevectorpotentialAiwithaphaseshiftasgivenby Ai→Ai− 1 2 θ(x.p)pj∂jAi)ψ=Eψ.(29) Ifψ0isthesolutionof(29)whenAi=0,thenthegeneralsolutionof(29)maybegivenby ψ=ψ0expiq x (A1ix0 −6 Thephasetermof(30)iscalledtheABphase.Inadoubleslitexperimentifweconsiderthechargedparticleofchargeqandmassmtopassthroughoneofthetheslits,thentheintegralin(30)runsfromthesourcex0tothescreenx,theinterferencepatternwilldependonthephasedifferenceoftwopaths.ThetotalphaseshiftfortheABeffectis ∆ΦAB=δΦ0+δΦNC =iq A−i qidxi2 θ (mv+qA).x (mV+qA).∇Aidxi(32) Previousresults[16,17]withaconstantformofspatialnoncommutativityareoftheform, ∆ΦNCAB∼i q X2 remindsusofmodelswiththeRashbatypeofinteractions[21].Hence,theseeffects canberelevantforthestudiesin[8,9]. NowwecometotheresultsobtainedinSectionIVandtheirimplications.AswehavementionedinSectionIV,weconsidertheSnydernoncomutativespace,asgivenin(23).AswehavepointedoutinSectionIV,inthepresentcase,theθ-contributionintheABphase,(derivedfortheconstantnoncommu-tativecase[16,17]),getsmultipliedbyadynamicalfactor.Thisleadstosomeinterestingconsequences.Asinpreviouscases[16],wecanalsoderiveaboundonθpertainingtoexperimentalobservations.Wecomputeγ,theratiooftheABphasesappearinginthenormalcaseandnoncommutativecase: γ≡ ∆φNC v v v Rλe λe λ2(e 7 In(34),∆φNCcorrespondstotheθ-contributionin(32)and∆φreferstotheθ=0commutativecase,RdenotestheelectronradiusintheexperimentalsetupandλeistheComptonwavelengthoftheelectron.Interestingly,inthepresentcase,theextradynamicalfactorcancelsRinγandreproducestheboundintheR-independentform: √ )−1λe.(35)cThisisdistinctfromthepreviouslyobtainedexpressions[16]buttheboundismuchloweredthanthatof[16]. Finally,wewouldliketomakearemarkontheeffectagenericnoncommutativespacecanhaveinthestudyofinequivalentquantizationinanon-simplyconnectedmanifold[22].ItiswellknownthatABeffectisaprototypeexampleofamultiplyconnecteddomainsincetheregionofthesolenoidthatcarriesthemagneticfluxisinaccessibletothechargedparticle.ThisleadstoapuncturedmanifoldQ=R2−δ,(δdenotingthesolenoidalarea),withanon-trivialfirsthomotopygroupΠ1(Q)=Z.Onecanstillworkinthetrivialhomotopysector,butthisrequiresadditionaltopologicaltermsintheaction.Theyclearlyshowupinthepath-integralquantizationofthesystem.Theseissueshavebeenextensivelystudiedin[22],forthenormal(commutative)spacetime.Asithasbeenestablishedhereandbefore[16,17],thatnoncommutativenatureofspacetimegeneratesadditionalcontributionsintheABphase,clearlythiswilldirectlyaffecttheabovementionedquantizationprogramme.Fromthestudyofthemodifiedquantizationconditions,itmightbepossibletosetanindependentboundonθ.Weintendtostudythisaspectinfuture. Acknowledgements:WewouldliketothankProf.P.HorvathyfordiscussionsandProf.G.TataraandPrf.D.Xiaoforcorrespondences.AlsowethanktheRefereesfortheconstructivecomments. [1]P.A.M.Dirac,Proc.Roy.Soc.London133(1931)60; R.Jackiw,Phys.Rev.Lett.54(1985)159;Foradifferentperspectiveandmorerelatedtoourwork,seeR.Jackiw,Int.J.Mod.Phys.A19S1(2004)137. [2]G.t’Hooft,Nucl.Phys.B79(1974)276;A.M.Polyakov,JETPLett.20(1974)194. [3]M.OnodaandN.Nagaosa,J.Phys.Soc.Jpn.71(2002)19;Z.Fangetal.,Science302(2003)92.[4]R.KarplusandJ.M.Luttinger,Phys.Rev.95(1954)1154. [5]A.BerardandH.Mohrbach.Phys.Rev.D6995(2004)127701. [6]H.S.Snyder,Phys.Rev.71(1947)38,N.SeibergandE.Witten,JHEP9909(1999)032,R.J.Szabo,Phy. Rep.378(2003)207,J.Lukierski,H.Ruegg,W.J.Zakrzewski,AnnalsPhys.243(1995)90,M.Dimitrijevic,L.Jonke,L.Moeller,E.Tsouchnika,J.WessandM.Wohlgenannt,Czech.J.Phys.54(2004)1243;S.Doplicher,K.FredenhagenandJ.E.Roberts,Phys.Lett.B331(1994)39;S.GhoshandP.Pal,Phys.Lett.B633(2006)397Phys.Lett.B618(2005)243S.Ghosh,Phys.Lett.B623(2005)251 [7]G.SundaramandQ.Niu,Phys.Rev.BB59(1999)14915;F.D.M.Haldane,Phys.Rev.Lett.93(2004)206602 cond-mat/0408417;R.ShindouandK.-IImura,Nucl.Phys.B720[FS](2005)399;C.Zhang,A.M.DudarevandQ.Niu,cond-mat/0507125.[8]P.Pureuret.al.,cond-mat/0501482. [9]G.TataraandH.Kawamura,J.Phys.Soc.Jpn71(2002)2613; [10]M.Onoda,G.TataraandN.Nagaosa,J.Phys.Soc.Jpn.73(2002)2624;H.Kawamura,Phys.Rev.Lett.90(2003) 047202,G.Tatara(correspondence). [11]A.Berard,J.LagesandH.Mohrbach,Eur.Phys.J.C35(2004)373-381;S.Ghosh,Phys.Lett.B638(2006)350[12]L.FaddeevandR.Jackiw,Phys.Rev.Lett.60(1988)1692. [13]C.Duvaletal.,Mod.Phys.LettB20(2006)373;Z.Horvath,P.A.HorvathyandL.Martina,cond-mat/0511099.[14]C.DuvalandP.A.Horvthy,Phys.Lett.B,Volume479,(2000)284;V.P.Nair,Phys.Lett.B505(2001) 249;V.P.NairandA.P.Polychronakos,Phys.Lett.B505(2001)267. [15]M.Chaichian,M.M.Sheikh-JabbariandA.Tureanu,Phys.Rev.Lett.86(2001)2716;M.Chaichian,A. Demichev,P.Presnajder,M.M.Sheikh-JabbariandA.Tureanu,Nucl.Phys.B611(2001)383. [16]M.Chaichian,P.Presnajder,M.M.Sheikh-JabbariandA.Tureanu,Phys.Lett.B527(2002)149;H.Falomir,J. Gamboa,M.Loeve,F.MendezandJ.C.Rojas,Phys.Rev.D66(2002)045018.[17]K.LiandS.Dulat,hep-th/0508193. [18]B.MirzaandM.Zarei,Eur.Phys.J.C32(2004)583. [19]T.Curtright,D.FairlieandC.Zachos,Phys.Rev.D58(1998)25002;L.Mezincescu,hep-th/0007046. 8 [20]P.A.Horvathy,hep-th/0602133 [21]B.Nikolic,L.P.ZarboandS.Welack,Phys.Rev.B72(2005)075335.WethankD.Xiaoforthis. [22]Seeforexample,L.Schulman,Techniquesandapplicationsofpathintegrals,WileyandSons,N.Y.1981; P.A.Horvathy,G.MorandiandE.C.G.Sudarshan,IlNuovoCimentoD11,p.201(19);H.Kleinert,PathIntegralsinQuantumMechanics,Statistics,andPolymerPhysics,2ndEd.WorldScientific(1995).
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo9.cn 版权所有 赣ICP备2023008801号-1
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务