Nanoimprint Lithography
StephenY.Chou,a)PeterR.Krauss,andPrestonJ.Renstrom
NanoStructureLaboratory,DepartmentofElectricalEngineering,UniversityofMinnesota,Minneapolis,Minnesota55455
͑Received20June1996;accepted17August1996͒
Nanoimprintlithography,ahigh-throughput,low-cost,nonconventionallithographicmethodproposedanddemonstratedrecently,hasbeendevelopedandinvestigatedfurther.Nanoimprintlithographyhasdemonstrated25nmfeaturesize,70nmpitch,verticalandsmoothsidewalls,andnearly90°corners.Furtherexperimentalstudyindicatesthattheultimateresolutionofnanoimprintlithographycouldbesub-10nm,theimprintprocessisrepeatable,andthemoldisdurable.Inaddition,uniformityovera15mmby18mmareawasdemonstratedandtheuniformityareacanbemuchlargerifabetterdesignedpressisused.Nanoimprintlithographyoveranonflatsurfacehasalsobeenachieved.Finally,nanoimprintlithographyhasbeensuccessfullyusedforfabricatingnanoscalephotodetectors,siliconquantum-dot,quantum-wire,andringtransistors.©1996AmericanVacuumSociety.
I.INTRODUCTION
Oneofthemajorroadblocksindevelopingnanostruc-turesisthelackofalow-cost,high-throughputmanufactur-ingtechnology.Thisproblemisparticularlyseriousforstructureswithasizebelow0.1m.Numeroustechnologiesareunderdevelopmenttosolvethisproblem.1–6Oneyearago,weproposedanddemonstratedanotherpossiblesolu-tiontonanostructuremanufacturing,namelyanewnoncon-ventionallithographicmethodcallednanoimprintlithography.7Thekeyadvantageofthislithographictech-niqueistheabilitytopatternsub-25nmstructuresoveralargeareawithahigh-throughputandlow-cost.Therefore,nanoimprintlithographyisamanufacturingtechnology.Inthisarticle,wewillpresentrecentprogressindevelopingthislithographictechnique.
II.PRINCIPLEOFIMPRINTLITHOGRAPHY
NanoimprintlithographyhastwobasicstepsasshowninFig.1.Thefirstistheimprintstepinwhichamoldwithnanostructuresonitssurfaceispressedintoathinresistcastonasubstrate,followedbyremovalofthemold.Thisstepduplicatesthenanostructuresonthemoldintheresistfilm.Inotherwords,theimprintstepcreatesathicknesscontrastpatternintheresist.Thesecondstepisthepatterntransferwhereananisotropicetchingprocess,suchasreactiveionetching͑RIE͒,isusedtoremovetheresidualresistinthecompressedarea.Thissteptransfersthethicknesscontrastpatternintotheentireresist.
Duringtheimprintstep,theresistisheatedtoatempera-tureaboveitsglasstransitiontemperature.Atthattempera-ture,theresist,whichisthermoplastic,becomesaviscousliquidandcanflowand,therefore,canbereadilydeformedintotheshapeofthemold.Theresist’sviscositydecreasesasthetemperatureincreases.
Unlikeconventionallithographymethods,imprintlithog-raphyitselfdoesnotuseanyenergeticbeams.Therefore,
a͒
nanoimprintlithography’sresolutionisnotlimitedbytheeffectsofwavediffraction,scatteringandinterferenceinaresist,andbackscatteringfromasubstrate.Furthermore,im-printlithographyisfundamentallydifferentfromstampingusingamonolayerofself-assembledmolecules.8Imprintli-thographyismoreofaphysicalprocessthanachemicalprocess.Itisconceivablethatinthefuture,themoldusedinimprintlithographycanbemadeusingahigh-resolutionbutlow-throughputlithography,andthenimprintlithographycanbeusedforlow-costmassproductionofnanostructures.
III.MOLDS,RESISTS,ANDPROCESSCONDITIONSInourexperiments,silicondioxideandsiliconwereusedasthemoldmaterials.Certainlyothermaterialssuchasmet-alsandceramicscouldalsobeused.Themoldwaspatternedwithdotsandlineswithaminimumlateralfeaturesizeof25nmusingelectronbeamlithographyandRIE.Polymethylmethacrylate͑PMMA͒wasourprimaryresist,althoughwehavehadsuccesswithAZandShipleynovlakresin-basedresistsaswell.ThePMMAshowedexcellentpropertiesforimprintlithography.PMMAhasasmallthermalexpansioncoefficientofϳ5ϫ10Ϫ5per°Candasmallpressureshrink-agecoefficientofϳ3.8ϫ10Ϫ7perpsi.9Moldreleaseagentswereaddedintotheresistsandworkedwelltoreducetheresistadhesiontothemold.Thepressureandtemperaturefortheimprintprocessdependontheresistused.ForPMMA,whichhasaglass-transitiontemperatureofabout105°C,theimprinttemperatureusedinourexperimentsistypicallybe-tween140and180°C,andthepressureisfrom600to1900psi.Forthattemperatureandpressurerange,thePMMAthermalshrinkageislessthan0.8%andthepressureshrink-ageislessthan0.07%͑asmallervolumeatahigherpres-sure͒,therefore,theshapeofthePMMAshouldconformwiththatofthemold.Toreduceairbubbles,theimprintprocessshouldbedoneinavacuum.ThegasusedintheRIEpatterntransfer,whichalsodependsontheresistused,wasoxygenforPMMA.
©1996AmericanVacuumSociety
4129
Electronicmail:chou@ee.umn.edu
J.Vac.Sci.Technol.B14(6),Nov/Dec1996
41290734-211X/96/14(6)/4129/5/$10.00
4130Chou,Krauss,andRenstrom:NanoimprintlithographyFIG.1.Schematicofnanoimprintlithographyprocess:͑1͒imprintingusingamoldtocreateathicknesscontrastinaresist,͑2͒moldremoval,and͑3͒patterntransferusinganisotropicetchingtoremoveresidueresistinthecompressedareas.
Typically,theintrusionofthemoldisfrom40to200nmandtheaspectratioforthesmallestmoldfeaturesis3:1.Thethicknessoftheresistisfrom50to250nm.Theresistwaskeptthickerthanthemoldintrusiontopreventthemoldfromcontactingthesubstrate.Thisisessentialtoprolongthelife-timeofthemold.
IV.RESULTSANDDISCUSSIONA.Imprint
VariousnanostructureshavebeenimprintedintoPMMAincluding25nmdiamholeswitha120nmperiodand30nmwidetrencheswitha70nmperiod.Figure2showsascan-ningelectronmicrographofimprintedPMMAstripsbefore
FIG.2.SEMmicrographofaperspectiveviewofstripsformedintoaPMMAfilmbyimprint.Thestripsare70nmwideand200nmtall,haveahighaspectratio,asurfaceroughnesslessthan3nm,andnearlyperfect90°corners.
J.Vac.Sci.Technol.B,Vol.14,No.6,Nov/Dec1996
4130
FIG.3.SEMmicrographofthemoldthatwasusedtoimprintthePMMAstripsshowninFig.2.
RIE.Thestrips,whichare70nmwideand200nmdeep,haveverysmooth͑aroughnesslessthan3nm͒andverticalsidewalls,andnearly90°corners.Thespacingbetweenthestripswasintentionallymadelargetoallowforexaminationofthesidewalls.TheterminalfaceofthePMMAstripsisnotfromcleaving,butdirectlyfromimprinting.Asshownlater,thesmallbendattheendofthePMMAstripsisactuallyduetocurvatureinthemold.B.Comparisonwithmold
Tocomparetheimprintedresistprofileandtheprofileofthemoldfeatures,weexaminedthemoldusingascanningelectronmicroscope͑SEM͒asshowninFig.3.ThePMMAprofileshowninFig.2comesfromtheclosedendofthemoldfingers;therefore,aprecisecomparisonbetweenthemoldshapeandthePMMAprofileisnotfeasible.However,comparisonofthegeneralfeatures,suchasthelinewidth,heights,andslightbendingattheendofeachline,indicatedthatthePMMAprofileconformedtothemold.C.EffectofRIEonlateraldimensionofimprintedPMMApatterns
ToexaminetheeffectsoftheoxygenRIEpatterntransfersteponremovingtheresidueresistinthecompressedareasandonchangingthelateraldimensionofthePMMAfea-tures,thePMMAresiststructurescreatedbyimprintlithog-raphywereusedasthetemplateforaliftoffofmetals.TheRIEprocesswasdonewithapowerof400Wandapressureof90mTorrusingoxygengas.Inthelift-offprocess,5nmTiand15nmAuwerefirstdepositedontotheentiresample,andthenthemetalonthePMMAsurfacewasremovedwhenthePMMAwasdissolvedinacetone.WecomparedtheSEMimageoftheimprintedPMMAtemplatebeforetheoxygen
4131Chou,Krauss,andRenstrom:NanoimprintlithographyFIG.4.SEMmicrographof25nmdiameterand120nmperiodmetaldotsfabricatedbyimprintlithographyandalift-offprocess.
RIEtransfersteptothatofthemetalpatternsaftertheliftoff.Figure4shows25nmdiamdotswitha120nmperiodliftedofffromthePMMAtemplateof25nmdiamholesmadebyimprintlithography.Figure5shows30nmline-widthand70nmpitchmetallinesliftedofffromaPMMAtemplatefabricatedusingimprintlithography.ComparingthesemetalfeatureswiththeimprintedPMMAtemplatesbeforeRIE,therearenonoticeabledifferencesbetweenthe
FIG.5.SEMmicrographof30nmwideand70nmperiodmetallinesfabricatedbyimprintlithographyandalift-offprocess.JVSTB-MicroelectronicsandNanometerStructures
4131
lift-offmetalstructuresandthePMMApatterns.Thisindi-catesthatduringtheoxygenRIEprocess,thecompressedPMMAareaswerecompletelyremovedwhilethelateralsizeofthePMMAfeaturesexperiencedlittlechange.D.Estimationofultimatelithographyresolution
Theminimumfeaturesizeofimprintlithographyshownintheprevioussectionislimitedbytheminimumfeaturesizeonthemold.Furtherexperimentshaveshownthatafewnanometervariationonthemoldcanbesuccessfullytrans-ferredintothesidewallsofthePMMA,asshowninFig.6͑a͒.Thismeansthatifthepolymerhassufficientmechani-calstrength,imprintlithographyshouldbeabletoproduce10nmfeaturesizeinthepolymer.
E.Processrepeatabilityandmolddurability
Imprintlithographyprocessrepeatabilityandmolddura-bilityaretwokeyissuesinmakingimprintlithographyamanufacturingtechnology.WehaveusedthesamemoldtoimprintPMMAover30timesandexaminedthemoldandthePMMAprofileeverytime.Wedidnotobserveanyno-ticeablechangesineitherthePMMAprofileorthemold.Althoughover30timesimprintingishardlyconsideredarepeatabilityanddurabilitytest,weshouldexpectthepro-cesstohaveagoodrepeatabilityandmolddurability.Thisisbecausemoldreleaseagentsgaveagoodrelease,thePMMAheldaboveglass-transitiontemperaturesisverysoft,andthemoldintrusiondoesnottouchthesubstrate.F.Uniformity
Toexaminetheuniformityofthisprocess,arrayswith30nmwidestripsanda150nmpitchwerefabricatedatthefourcornersandthecenterofamoldthathadasizeof15mmby18mm.AfterimprintlithographyinPMMA,alift-offpro-cessleft30nmwidemetallineswitha150nmpitchonthesubstrate,asshowninFig.7.Figure7clearlyshowsthateventhoughthepressweusedisveryprimitive,imprintlithographycanbeveryuniformoverasignificantlylargearea.Wearequiteconfidentthatwithabetterdesignedpress,gooduniformityoveramuchlargerimprintareacanbeachieved.
G.Imprintlithographyoveranonflatsurface
Thereareatleasttwowaystoapproachtheproblemofimprintlithographyoveranonflatsurface.Thebruteforcemethodistouseathickresist,createalargethicknesscon-trast,andetchthePMMAverydeepintheverticaldirection.AnexampleisgiveninFig.6wherea75nmstepinthesubstratewascoveredwitha300nmresist.Thena200nmthicknesscontractwascreatedinthePMMAandabout150nmofPMMAwasremovedduringthepatterntransfer.Asshown,the75nmstepcanbeseenclearlyafteretching.However,duetoprolongedetching,thelinewidthisreducedfrom60to40nm.
Abetterapproachwouldbetouseathickresisttocreateaflatsurfacefirst.Aftertheimprintstep,amaterialthatis
4132Chou,Krauss,andRenstrom:NanoimprintlithographyFIG.6.ThePMMAlinesimprintedovera75nmstep͑a͒beforeRIEpatterntransferand͑b͒after.Duetothedeepverticaletchrequired,thePMMAlinewidthwasreducedfrom60to40nm.
veryresistanttoRIEiscoatedonlyonthetopsurfaceoftheimprintedpattern.ThenthecoatedmaterialisusedasaRIEmaskintransferringthepatternintotheentireresist.Wearecurrentlydevelopingthistechnology.
H.Fabricationofnanodevicesusingimprintlithography
Inparallelwithdevelopingimprintlithography,wehaveusedimprintlithographytofabricatenanodevices.Oneex-J.Vac.Sci.Technol.B,Vol.14,No.6,Nov/Dec1996
4132
FIG.7.SEMmicrographsof30nmwidemetalgratingswitha150nmperiodfabricatedusingimprintlithographyandliftoff.Thefivepicturescomefromthefourcornersandthecenterofamoldthathasasizeof15mmby18mm.
ampleismetal–semiconductor–metalphotodetectorsfabri-catedusingimprintlithographyandopticallithography.Inaddition,wefabricatedquantum-wire,quantum-dot,andringtransistorsinsiliconusingimprintlithographyandRIEofsilicon.Quantumeffectsandsingleelectroneffectswereob-servedinthesedevices,whichwillbereportedelsewhere.10V.FUTUREIMPROVEMENTANDCHALLENGESNodoubt,imprintlithographyisstillatitsinfancyandfurtherinvestigationsareneededtomakeitamanufacturingtechnology.Currently,wehavenotfullycharacterizedandfullyunderstoodimprintlithography.Thepressweusedisratherprimitive.Thesurfacestickingproblem,whichhasbeengreatlyreducedinourcurrentwork,stillneedsmoreimprovement.Moldingconditionsarenotoptimizedyet.Theeffectofthermalexpansiononlithographyresolutionhasnotbeenstudied.Moldswithsmallerfeaturesizeareneededtoexploretheultimateresolution.Wealsoneedtoprovethattheareaforasingleimprintcanbemuchlargerthan1sqin.Finally,multilevelalignmentisoneofthebiggestchal-lenges.However,sincethefirstreportonimprintlithographyayearago,manygroupshavestartedlookingintothistech-nology.Weshouldexpectsignificantprogressinthenearfuture.
VI.CONCLUSION
Wehavedemonstratedthatimprintlithographycanachieve25nmfeaturesizeand70nmpitch,verticalandsmoothsidewalls,nearly90°corners,anduniformityoveranareaof15mmby18mminasingleimprint.Ourstudyindicatesthatimprintlithographycanpotentiallyhavea10nmresolutionoveranareamuchgreaterthan1sqin.,andcanhavegoodrepeatabilityanddurability.Therefore,im-printlithographyhashigh-throughputandlow-cost.With
4133Chou,Krauss,andRenstrom:Nanoimprintlithography
furtherdevelopment,imprintlithographycanbecomethetechnologyformanufacturingnanostructures,andcanhaveasignificantimpactinmanyareassuchasintegratedcircuits,biology,andchemistry.Nodoubt,thecurrentstudyofim-printlithographyispreliminary.Yet,thefutureofimprintlithographyseemsverypromising.
ACKNOWLEDGMENT
TheauthorswouldliketothankothermembersoftheNanoStructureLaboratorywhoseeffortshaveprofoundlyaf-fectedthecurrentwork.
JVSTB-MicroelectronicsandNanometerStructures
4133
1
A.N.Broers,J.M.Harper,andW.W.Molzen,Appl.Phys.Lett.33,3922
͑1978͒.D.Flanders,Appl.Phys.Lett.36,93͑1980͒.3
K.Early,M.L.Schattenburg,andH.I.Smith,Microelectron.Eng.11,317͑1990͒.4
M.A.McCordandR.F.P.Pease,J.Vac.Sci.Technol.B4,86͑1986͒.5
J.W.Lyding,T.C.Shen,J.S.Hubacek,J.R.Tucker,andG.C.Abelin,Appl.Phys.Lett.64,2010͑1994͒.6
T.R.Albrecht,M.M.Dovek,C.A.Lang,P.Grutter,C.F.Quate,S.W.J.Kuan,C.W.Frank,andR.F.W.Pease,J.Appl.Phys.64,1178͑1988͒.7
S.Y.Chou,P.R.Krauss,andP.J.Renstrom,Appl.Phys.Lett.67,3114͑1995͒;Science272,85͑1986͒;P.R.KraussandS.Y.Chou,the39thEIPB,Scottsdale,AZ,May30–June2,1995͓J.Vac.Sci.Technol.B13,2850͑1995͔͒.8
A.KumarandG.M.Whitesides,Appl.Phys.Lett.63,2002͑1993͒.9
I.Rubin,InjectionMolding͑Wiley,NewYork,1972͒.10
L.J.Guo,P.R.Krauss,andS.Y.Chou,Appl.Phys.Lett.͑submitted͒.
因篇幅问题不能全部显示,请点此查看更多更全内容