💡💡💡GL-CRM是为了更好地处理多尺度变化而设计的。它包括两个主要组件:可控感受野模块(CRM)和全局到局部设计(GL)。CRM灵活地提取和整合具有多个尺度和粒度的特征,而GL架构具有从全局上下文到子块区域再到局部语义信息的层次感知过程。
💡💡💡如何使用:替换YOLO11 C3k2,实现二次创新,具备多尺度能力
💡💡💡Mask mAP50 从原始的0.926 提升至0.934
改进结构图如下:
《YOLOv11魔术师专栏》将从以下各个方向进行创新:
【原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化 】【小目标性能提升】【前沿论文分享】【训练实战篇】
【pose关键点检测】【yolo11-seg分割】
定期向订阅者提供源码工程,配合博客使用。
订阅者可以申请,便于报销
💡💡💡为本专栏订阅者提供创新点改进代码,改进网络结构图,方便paper写作!!!
💡💡💡适用场景:红外、小目标检测、工业缺陷检测、医学影像、遥感目标检测、低对比度场景
💡💡💡适用任务:所有改进点适用【检测】、【分割】、【pose】、【分类】等
💡💡💡全网独家首发创新,【自研多个自研模块】,【多创新点组合适合paper 】!!!
☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️
包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、24年最新顶会改进思路、原创自研paper级创新等
🚀🚀🚀 本项目持续更新 | 更新完结保底≥80+ ,冲刺100+ 🚀🚀🚀
🍉🍉🍉 联系WX: AI_CV_0624 欢迎交流!🍉🍉🍉
⭐⭐⭐专栏涨价趋势 159 ->199->259->299,越早订阅越划算⭐⭐⭐
💡💡💡 2024年计算机视觉顶会创新点适用于Yolov5、Yolov7、Yolov8、Yolov9等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!
💡💡💡重点:通过本专栏的阅读,后续你也可以设计魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!
☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️
1.YOLO11介绍
Ultralytics YOLO11是一款尖端的、最先进的模型,它在之前YOLO版本成功的基础上进行了构建,并引入了新功能和改进,以进一步提升性能和灵活性。YOLO11设计快速、准确且易于使用,使其成为各种物体检测和跟踪、实例分割、图像分类以及姿态估计任务的绝佳选择。
Segmentation 官方在COCO数据集上做了更多测试:
2.数据集介绍
包裹分割数据集是一个精选的图片集合,专门为计算机视觉领域中与包裹分割相关的任务量身定制。这个数据集旨在帮助研究人员、开发者和爱好者们进行与包裹识别、分类和处理相关的项目。
该数据集包含了一系列展示不同背景和环境下各种包裹的多样化图片,是训练和评估分割模型的宝贵资源。无论您从事的是物流、仓库自动化还是任何需要精确包裹分析的应用,包裹分割数据集都提供了一个针对性强且全面的图片集,以提高您的计算机视觉算法的性能。
数据集结构
包装分割数据集的数据分布结构如下:
- 训练集:包含 1920 幅图像及其相应的注释。
- 测试集:由 幅图像组成,每幅图像都与各自的注释配对。
- 验证集:由 188 幅图像组成,每幅图像都有相应的注释。
应用
由包装分割数据集(Package Segmentation Dataset)推动的包装分割对于优化物流、加强最后一英里配送、改进制造质量控制以及促进智能城市解决方案至关重要。从电子商务到安全应用,该数据集是一项关键资源,促进了计算机视觉领域的创新,实现了多样化和高效的包装分析应用。
- 这幅图像显示了图像的一个实例,其特点是注释了边界框,并用掩码勾勒出识别出的对象。该数据集包含在不同地点、环境和密度下拍摄的各种图像。该数据集是开发该任务专用模型的综合资源。
- 这个例子强调了数据集的多样性和复杂性,突出了高质量传感器数据对于涉及无人机的计算机视觉任务的重要性。
标签可视化:
3.原始YOLO11-seg模型性能
3.1 训练结果可视化
YOLO11-seg summary (fused): 265 layers, 2,834,763 parameters, 0 gradients, 10.2 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:10<00:00, 1.79s/it]
all 188 693 0.875 0.921 0.925 0.839 0.9 0.902 0.926 0.809
Mask mAP50 为0.926
MaskPR_curve.png
预测结果如下:
4.原理介绍
原文链接:
GL-CRM 全局到局部可控感受野模块的工作原理
GL-CRM(Global-to-Local Controllable Receptive Module)是为了更好地处理文档中不同元素的多尺度变化而设计的。它包括两个主要组件:可控感受野模块(CRM)和全局到局部设计(GL)。CRM灵活地提取和整合具有多个尺度和粒度的特征,而GL架构具有从全局上下文(整页规模)到子块区域(中等规模)再到局部语义信息的层次感知过程。
CRM:对于每一层的特征X,首先使用权重共享的卷积层w和核大小k提取特征。通过使用一组不同的扩张率d=[d1, d2, ..., dn]来捕获不同粒度的特征。然后,将这些特征融合,并允许网络自主学习如何融合不同的特征组件。
GL设计:全局级别使用较大的核和扩张率来捕获整页元素的更多纹理细节和保存局部模式。在中间阶段,特征图被下采样,纹理特征减少,此时使用较小的核和扩张率来感知中等规模的元素,如文档子块。在深层阶段,语义信息占主导地位,使用基本的瓶颈作为轻量级模块,专注于局部语义信息。
结合YOLO11结构图:
Mask mAP50 从原始的0.926 提升至0.934
YOLO11-seg-G2L_CRM summary: 271 layers, 2,797,515 parameters, 0 gradients, 10.3 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:08<00:00, 1.35s/it]
all 188 693 0.883 0.913 0.934 0.847 0.887 0.918 0.934 0.828
5.系列篇
原文链接: