您好,欢迎来到化拓教育网。
搜索
您的当前位置:首页YOLO11-pose关键点检测:SPPF优化 | 新一代高效可形变卷积DCNv4结合SPPF二次创新

YOLO11-pose关键点检测:SPPF优化 | 新一代高效可形变卷积DCNv4结合SPPF二次创新

来源:化拓教育网

💡💡💡本文独家改进:DCNv4更快收敛、更高速度、更高性能,完美和YOLO11结合,助力涨点

DCNv4优势:(1) 去除空间聚合中的softmax归一化,以增强其动态性和表达能力;(2) 优化存储器访问以最小化冗余操作以加速。这些改进显著加快了收敛速度,并大幅提高了处理速度,DCNv 4实现了三倍以上的前向速度

 💡💡💡如何跟YOLO11结合:1) SPPF高效结合

 DCNv4结合SPPFPose mAP50 有原先的 0.871   提升至 0.883  

改进结构图如下:

  《YOLOv11魔术师专栏》将从以下各个方向进行创新:

原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化 【小目标性能提升】前沿论文分享】【训练实战篇】

定期向订阅者提供源码工程,配合博客使用。

订阅者可以申请,便于报销 

💡💡💡为本专栏订阅者提供创新点改进代码,改进网络结构图,方便paper写作!!!

💡💡💡适用场景:红外、小目标检测、工业缺陷检测、医学影像、遥感目标检测、低对比度场景

💡💡💡适用任务:所有改进点适用【检测】、【分割】、【pose】、【分类】等

💡💡💡全网独家首发创新,【自研多个自研模块】,【多创新点组合适合paper 】!!!

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、24年最新顶会改进思路、原创自研paper级创新等

🚀🚀🚀 本项目持续更新 | 更新完结保底≥80+ ,冲刺100+ 🚀🚀🚀

🍉🍉🍉 联系WX: AI_CV_0624 欢迎交流!🍉🍉🍉

⭐⭐⭐专栏涨价趋势 159 ->199->259->299,越早订阅越划算⭐⭐⭐

💡💡💡 2024年计算机视觉顶会创新点适用于Yolov5、Yolov7、Yolov8、Yolov9等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!

💡💡💡重点:通过本专栏的阅读,后续你也可以设计魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

 1.YOLO11介绍

Ultralytics YOLO11是一款尖端的、最先进的模型,它在之前YOLO版本成功的基础上进行了构建,并引入了新功能和改进,以进一步提升性能和灵活性。YOLO11设计快速、准确且易于使用,使其成为各种物体检测和跟踪、实例分割、图像分类以及姿态估计任务的绝佳选择。

 pose官方在COCO数据集上做了更多测试: 

2. 手势关键点数据集介绍

2.1数据集介绍

数据集大小300张:训练集236张,验证集张

关键点共21个

# 关键点的类别
keypoint_class = ['Ulna', 'Radius', 'FMCP','FPIP', 'FDIP', 'MCP5','MCP4', 'MCP3', 'MCP2','PIP5', 'PIP4', 'PIP3'
                  ,'PIP2', 'MIP5', 'MIP4','MIP3', 'MIP2', 'DIP5','DIP4', 'DIP3', 'DIP2']

标记后的数据格式如下:一张图片对应一个json文件

labelme2yolo-keypoint

源码见博客:

 生成的txt内容如下:

0 0.48481 0.476 0.70079 0.77886 0.31308 0.70597 2 0.42206 0.70695 2 0.54954 0.59785 2 0.67569 0.53278 2 0.720 0.48288 2 0.28402 0.46282 2 0.35865 0.44521 2 0.43395 0.43102 2 0.522 0.43836 2 0.286 0.42270 2 0.34941 0.39188 2 0.44782 0.37818 2 0.55680 0.39628 2 0.21731 0.34051 2 0.33884 0.27495 2 0.47094 0.25196 2 0.62351 0.29746 2 0.20674 0.29403 2 0.33620 0.20108 2 0.48018 0.16879 2 0.65654 0.24070 2 

讲解:

第一个0代表:框的类别,因为只有hand一类,所以为0

0.48481 0.476 0.70079 0.77886 代表:归一化后的 框的中心点横纵坐标、宽、高

0.31308 0.70597 2代表:归一化后的 第一个关键点的横纵坐标、关键点可见性

关键点可见性理解:0代表不可见、1代表遮挡、2代表可见

2.1 生成的yolo数据集如下

hand_keypoint:
-images:
 --train: png图片
 --val:png图片
-labels:
 --train: txt文件
 --val:txt文件

3.YOLO11-pose魔改提升精度

3.1原始结果

Pose mAP50 为  0.871  

YOLO11-pose summary (fused): 300 layers, 3,199,712 parameters, 0 gradients, 7.8 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Pose(P          R      mAP50  mAP50-95): 100%|██████████| 4/4 [00:04<00:00,  1.23s/it]
                   all                        0.999          1      0.995      0.668      0.922      0.922      0.871      0.638


PosePR_curve.png

 3.2 DCNv4结合SPPF

 源码链接:

论文: 

摘要:我们介绍了可变形卷积v4 (DCNv4),这是一种高效的算子,专为广泛的视觉应用而设计。DCNv4通过两个关键增强解决了其前身DCNv3的局限性:去除空间聚合中的softmax归一化,增强空间聚合的动态性和表现力;优化内存访问以最小化冗余操作以提高速度。与DCNv3相比,这些改进显著加快了收敛速度,并大幅提高了处理速度,其中DCNv4的转发速度是DCNv3的三倍以上。DCNv4在各种任务中表现出卓越的性能,包括图像分类、实例和语义分割,尤其是图像生成。当在潜在扩散模型中与U-Net等生成模型集成时,DCNv4的性能优于其基线,强调了其增强生成模型的可能性。在实际应用中,将InternImage模型中的DCNv3替换为DCNv4来创建FlashInternImage,无需进一步修改即可使速度提高80%,并进一步提高性能。DCNv4在速度和效率方面的进步,以及它在不同视觉任务中的强大性能,显示了它作为未来视觉模型基础构建块的潜力。

图1所示。(a)我们以DCNv3为基准显示相对运行时间。DCNv4比DCNv3有明显的加速,并且超过了其他常见的视觉算子。(b)在相同的网络架构下,DCNv4收敛速度快于其他视觉算子,而DCNv3在初始训练阶段落后于视觉算子。

Pose mAP50 有原先的 0.871   提升至 0.883  


YOLO11-pose-DCNv4_SPPF summary (fused): 311 layers, 5,053,952 parameters, 0 gradients, 9.3 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Pose(P          R      mAP50  mAP50-95): 100%|██████████| 2/2 [00:04<00:00,  2.09s/it]
                   all                        0.999          1      0.995      0.669      0.926      0.906      0.883      0.719

PosePR_curve.png

 

 

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo9.cn 版权所有 赣ICP备2023008801号-1

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务